Obesity and diabetes: Actual epigenetics or just IVF?

This press release that appeared in my newsfeed titled "You are what your parents ate!" caught my eye because I'm a new mom of a new human and also because I study and teach human evolution.

So I clicked on it.

And after that title primed me to think about me!, the photo further encouraged my assumption that this is really all about humans.


"You are what your parents ate!"

But it's about mice. Yes, evolution, I know, I know. We share common ancestry with mice which is why they can be good experimental models for understanding our own biology. But we have been evolving separately from mice for a combined total of over 100 million years. Evolution means we're similar, yes, but evolution also means we're different.

Bah. It's still fascinating, mice or men, womice or women! So I kept reading and learned how new mice made with IVF--that is, made of eggs and sperm from lab-induced obese and diabetic mouse parents, but born of healthy moms--inherited the metabolic troubles of their biological parents. And by inherited, we're not talking genetically, because these phenotypes are lab-induced. We're talking epigenetically. So the eggs and sperm did it, but not the genomes they carry!

This isn't so surprising if you've been following the burgeoning field of epigenetics, but it's hard to look away. This fits with how we see secular increases in human obesity and adult-onset diabetes--it can't be genomic evolution, it must be epigenetic evolution, whatever that means!

As the press release says...
"From the perspective of basic research, this study is so important because it proves for the first time that an acquired metabolic disorder can be passed on epigenetically to the offspring via oocytes and sperm- similar to the ideas of Lamarck and Darwin," said Professor ...
Whole new ways of thinking are so exciting.

Except when you remember a two-year-old piece by Bethany Brookshire (because you use it to teach a course on sex and reproduction) which explained something that suggests we may have a major experimental problem with the study above.

In IVF, the sperm gets isolated (or "washed") from the semen.

You know what happens, to mice in particular, when there's no semen? Obesity and other symptoms of metabolic syndrome! There are placental differences too. This was published in PNAS.


"Offspring of male mice without seminal fluid had bigger placentas (top right) and increased body fat (bottom right) compared with offspring of normal male mice (left images)" from The fluid part of semen plays a seminal role by Bethany Brookshire.

So I went back to look at the original paper that the press release with the donut lady was about. I wanted to see if they are aware of this potential problem with IVF and whether it explains their findings, rather than the trendy concept of epigenetics...

So even though they titled it "Epigenetic germline inheritance of diet-induced obesity and insulin resistance," I wanted to see if they at least accounted for this trouble with semen, like how it's probably important, how its absence may bring about the same phenotypes they're tracking, and how IVF doesn't use semen.

But I don't have access to Nature Genetics.

Who has access to Nature Genetics, can check out the paper, and wants to write the ending of this blog post?

Step right up! Post your work in the comments (or email me holly_dunsworth@uri.edu, and please include a pdf of the paper so I can see too) and I'll paste it right here.

Update 12:19 pm
Two very good comments below are helpful. Please read those.

I'll add that I now have the pdf of the paper (but not the Supplemental portion where all the methods live and other important information resides). This quote from the second paragraph implies they do not agree with the finding of (or have forgotten about) the phenotypic variation apparently caused by sperm washed of their seminal fluid:
"The use of IVF enabled us to ensure that any inherited phenotype was exclusively transmitted via gametes."
As the second commenter (Anonymous) pointed out below, there does not appear to be a comparison of development or behavior between any of the IVF mice and mice made by mouse sex. So there is no way to tell whether their IVF mice exhibit the same metabolic changes that the semen/semenless study found. Therefore, it is neither possible to work the semen issue into the explanation nor to rule out its effects. Seems like a missed opportunity.

Completely unrelated and inescapable... I'm a little curious about how the authors decided to visualize their data like this:


Hiç yorum yok:

Yorum Gönder

Rare Disease Day and the promises of personalized medicine

O ur daughter Ellen wrote the post that I republish below 3 years ago, and we've reposted it in commemoration of Rare Disease Day, Febru...