Darwin the Newtonian. Part IV. What is 'natural selection'?

If, as I suggested yesterday, genetic drift is a rather unprovable or even metaphysical notion, then what is the epistemological standing of its opposite: not-drift?  That concept implies that the reproductive success of the alternative genotypes under consideration is not equal. But since we saw yesterday that showing that two things are exactly equal is something of a non-starter, how different is its negation?  

Before considering this, we might note that to most biologists, those who think and those who just invoke explanations, non-drift means natural selection.  That is what textbooks teach, even in biology departments (and in schools 
of medicine and public health, where simple-Simon is alive and well). But natural selection implies systematic, consistent favoring of one variant over others, and for the same reason.  That is by far the main rationale for the routine if unstated assumption that today's functions or adaptations are due to past selection for those same functions: we observe today and retroactively extrapolate to the past.  It's understandable that we do that, and it was a major indirect way (along with artificial selection) in which Darwin was able to reconstruct an evolutionary theory that didn't require divine ad hoc creation events.   But there are problems with this sort of thinking--and some of them have long been known, even if essentially stifled by what amounts to a selectionist ideology, that is, a rather unquestioning belief in a kind of single-cause worldview.

What does exactly not-zero mean?
I suggested yesterday that drift, meaning exactly no systematic difference between states (like genotypes) was so illusive as to be essentially philosophical.  But zero-difference is a very specific value and may thus be especially hard to prove.  But non-zero is essentially an open-ended concept and might thus be trivially easy to show.  But it's not!

One alternative to two things being not zero is simply that they have some difference.  But need that difference be specifiable or of a fixed amount?  Need it be constant or similar over instances of time and place?  If not, we are again in rather spooky territory, because not being identical is not much if any help in understanding.  One wants to know by how much, and why--and if it's consistent or a fluke of sample or local circumstance.  But this is not a fixed set of things to check.

Instead of just 'they're different', what is usually implicitly implied is that the genotypes being compared have some particular, specific fitness difference amount, not just that they differ. That is what asserting different functional effects of the variants largely implies, because otherwise one is left asserting that they are different....sort of, sometimes, and this isn't very satisfying or useful.  It would be normal, and sensible, to argue that the difference need not be precisely, deterministically constant, because there's always a luck component, and ecological conditions change.  But if the difference varies widely among circumstances, it is far more difficult to make persuasive 'why' explanations. For example, small differences favoring variant A over variant B in one sample or setting might actually favor B over A in other times or places.  Then selection is a kind of willy-nilly affair--which probably is true!--but much more difficult to infer in a neat way, because it really is not different from being zero on average (though 'on average' is also easier to say than to account for causally).  If a difference is 'not zero', there are an infinity of ways that might be so, especially if it is acknowledged to be variable, as every sensible evolutionary biologist would probably agree is the case.

But then looking for causes becomes very difficult because among all the variants in a population, and all the variation in individual organisms' experience means that there may be an open-ended  number of explanations one would have to test to account for an observed small fitness difference between A and B.  And that leads to serious issues about statistical 'significance' and inference criteria.  That's because most alleged fitness differences are essentially local and comparative.  In turn that means the variant is not inherently selected but is context-dependent: fitness doesn't have a universal value, like, say, G, the universal Newtonian gravitational constant in physics, and to me that means that even an implicitly Newtonian view of natural selection is mistaken as a generality about life. 

If selection were really force-like in that sense, rather than an ephemeral, context-specific statistical estimate, its amount (favoring A over B) should approach the force's parameter, analogous to G, asymptotically: the bigger the sample and greater the number of samples analyzed the closer the estimated value would get to the true value.  Clearly that is not the way life is, even in most well-controlled experimental settings.  Indeed, even Darwin's idea of a constant struggle for existence is incompatible with that idea.

There are clearly many instances in which selective explanations of the classical sort seem specifically or even generally credible.  Infectious disease and the evolution of resistance is an obvious example.  Parallel evolution, such as independent evolution of, say, flight or similar dog-like animals in Australia and Africa, may be taken to prove the general theory of adaptation to environments.  But what about all the not dogs in these places?  We are largely in ad hoc explanatory territory, and the best of evolutionary theory clearly recognizes that.

So, in what sense does natural selection actually exist?  Or neutrality?  If they are purely comparative, local, ad hoc phenomena largely demonstrable only by subjective statistical criteria, we have trouble asserting causation beyond constructing Just-So stories.  Even with a plausible mechanism, this will often be the case, because plausibility is not the same as necessity.  Just-So stories can, of course, be true....but usually hard to prove in any serious sense.

Additionally, in regard to adaptive traits within or between populations or species, if genetic causation is due to contributions of many genes, as typically seems to be the case, there is phenogenetic drift, so that even with natural selection working force-like on a trait, there may be little if any selection on specific variants in that mix: even if the trait is under selection, a given allelic variant may not be.

Some other slippery issues
Natural selection is somewhat strange.  It is conceptually a passive screen of variation, but often treated as if an inherent property of a genotype (or an allele), whose value is determined on what else is in the same locus in the population.  Yet it's also treated as if this is inherent and unchanging property of the genotype...until any competing genotypes disappear.  As the favored allele becomes more common, its amount of advantage will increasingly vary because, due to recombination and mutation, the many individuals carrying the variant will also vary in the rest of their genomes, which will introduce differences in fitness among them (likewise, early on most carriers of the favored 'A' variant will be heterozygotes, but later on more and more will be homozygotes).  When the A variant becomes very common in the population, its advantage will hardly be detectable since almost all its peers fellws will have the same genotype at that site.  Continued adaptation will have to shift to other genes, where there still is a difference.  Some AA carriers will have detrimental variants at another gene, say B, and hence reduced fitness. Relatively speaking, some A's, or eventually maybe all A's, will have become harmful, because even in classical Darwinian terms selection is only relative and local.  So, selection even in the force-like sense, is very non-Newtonian, because it is so thoroughly context-dependent.  

Another issue is somatic mutation.  The genotypes that survive to be transmitted to the next generation are in the germ line.  But every cell division induces some mutations, and depending on when and where during development or later life a mutation occurs, it could affect the traits of the individual.  Even if selection were a deterministic force, it screens on individuals and hence that includes any effects of somatic mutation in those individuals.  But somatic mutations aren't inherited, so even if the mechanism is genetic their effects will appear as drift in evolutionary terms.  

Most models of adaptive selection are trait-specific.  But species do not evolve one trait at a time, except perhaps occasionally when a really major stressor sweeps through (like an epidemic).  Generally, a population is always subject to a huge diversity of threats and opportunities, contexts and changes.  Every one of our biological systems is always being tested, of in many ways at once. Traits are also often correlated with one another, so pushing on one may be pulling on another.  That means that even if each trait were being screened for separate reasons, the net effect on any one of the must typically be very very small, even if it is Newtonian in its force-like nature.  

The result is something like a Japanese pachinko machine.  Pachinko is popular type of gambling in Japan. A flurry of small metal balls bounces down from the top more or less randomly through a jungle of pins and little wheels, before finally arriving at the bottom.  The balls bounce off each other on the way in basically random collisions. The payoff (we could say it's analogous to fitness) is based on the balls that, after all this apparent chaos, end up in a particular pocket at the bottom.  In biological analogy, each ball can represent a different trait or perhaps individuals in a population. They bounce around rather randomly, constrained only by the walls and objects there--nothing steers them specifically. What's in the pocket is the evolutionary result. 

Pachinko machine (from Google images)
 (you can easily find YouTube videos showing pachinkos in action)

All similes limp, and these collisions are probably in truth deterministic, even if far too too complex to predict the outcome.  Nonetheless, this sort of dynamics among individuals with their differing genes of varying and context-specific effects, in diverse and complex environments, suggests why in this dynamic complex, change related to a given trait will be a lot like drift; there are so many that if each were too strongly force-like extinction would be more likely the result.  Further, since most traits are affected by many parts of the genome, the intensity of selection on any one of them must be reduced to be close to the expectations of drift. Adaptive complexity is another reason to think that adaptive change must be glacially slow, as Darwin stressed many times, but also that selection is much less force-like, as a rule.  After the fact, seeing what managed to survive, it looks compatible with force-like, straight-line selection.

Here, the process seems to rest heavily on chance.  But as we discussed in a post in 2014 in a series on the modes and nature of natural selection, we likened the course that species take through time to the geodesic paths that objects take through spacetime, that is determined (and there it really does seem to be 'determined') by the splattered matter and energy in any point it passes through.

An overall view
This leaves us in something of a quandary.  We can easily construct criteria for making some inferences, in the stronger cases, and testing them in some experimental settings.  We can proffer imaginative scenarios to account for the presence of organized traits and adaptations.  But evolutionary explanations are often largely or wholly speculative.  This applies comparably to natural selection and to genetic drift as well, and these are not new discoveries although they seem to be in few peoples' interest to acknowledge them fully.

Darwin wanted to show by plausibility argument that life on earth was the result of natural processes, not ad hoc divine creation events.  He had scant concepts of chance or genetic drift, because his ideas of the mechanism of inheritance were totally wrong.  Concepts of probabilism and statistical testing and the like were still rather new and only in restricted use.  Darwin would have no trouble acknowledging a role for drift.  How he would respond to the elusiveness of these factors, and that they really are not 'forces', is hard to say--but he probably would vigorously try to defend systematic selection by arguing that what is must have gotten here by selection as a force. 

The causal explanation of life's diversity still falls far short of the kind of mathematical or deterministic rigor of the core physical sciences, and even of more historical physical sciences like geology, oceanography, and meteorology.  Until someone finds better ways (if they indeed are there to be found), much of evolutionary biology verges on metaphysical philosophy for reasons we've tried to argue in this series.  We should be honest about that fact, and clearly acknowledge it.

One can say that small values are at least real values, or that you can ignore small values, as in genetic drift.  Likewise one can say that small selective effects will vary from sample to sample because of chance and so on.  But such acknowledgments undermine the kinds of smooth inferences we naturally hunger for.  The assumption that what we see today is what was the case in the past is usually little more than an assumption. This is a main issue we should confront in trying to understand evolution--and it applies as well to the promises being made of 'precision' prediction of genomic causation in health and medicine.  The moving tide of innumerable genotypic ways to get similar traits, at any time, within or between populations, and over evolutionary time, needs to be taken seriously. 

It may be sufficient and correct to say, almost tautologically, that today's function evolved somehow, and we can certainly infer that it got here by some mix of evolutionary factors.  Our ancestors and their traits clearly were evolutionarily viable or we wouldn't be here.  So even if we can't really trace the history in specifics, we can usually be happy to say that, clearly, whales evolved to be able to live in the ocean.  Nobody can question that.  But the points I've tried to make in this series are serious ones worth thinking seriously about, if we really want to understand evolution, and the genetic causal mechanisms that it has produced.

Darwin the Newtonian. Part III. In what sense does genetic drift 'exist'?

It has been about 50 years since Motoo Kimora and King and Jukes proposed that a substantial fraction of genetic variation can be selectively neutral, meaning that the frequency of such an allele (sequence variant) in a population or among species changes by chance--genetic drift--and, furthermore, that selectively 'neutral' variation and its dynamics are a widespread characteristic of evolution (see Wikipedia: Neutral theory of molecular evolution). Because Darwin had been so influential with his Newtonian-like deterministic theory of natural selection, natural evolution was and still is referred to as 'non-Darwinian' evolution. That's somewhat misleading, if convenient as a catch-phrase, and often used to denigrate the idea of neutral evolution, because even Darwin knew there were changes in life that were not due to selection (e.g., gradual loss of traits no longer useful, chance events affecting fitness).

First, of course, is the 'blind watchmaker' argument.  How else can one explain the highly organized functionally intricate traits of organisms, from the smallest microbe to the largest animals and plants?  No one can argue that such traits could plausibly just arise 'by chance'!

But beyond that, the reasoning basically coincides with what Darwin asserted.  It takes a basically thermodynamic belief and applies it to life.  Mother Nature can detect even the smallest difference between bearers of alternative genotypes, and in her Newtonian force-like way, will proffer better success on the better genotype.  If we're material scientists, not religious or other mystics, then it is almost axiomatic that since a mutation changes the nature of the molecule, if for no other reason that it requires the use of a different nucleotide and hence the use and or production of at least slightly different molecules and at least slightly different amounts of energy.

The difference might be very tiny in a given cell, but an organism has countless cells--many many billions in a human, and what about a whale or tree! Every nonessential nucleotide has to be provided for each of the billions of cells, renewed each time any cell divides.  A mutation that deleted something with no important function would make the bearer more economical in terms of its need for food and energy. The difference might be small, but those who then don't waste energy on something nonessential must on average do better: they'll have to find less food, for example, meaning spend less time out scouting and hence exposed to predators, etc.  In short, even such a trivial change will confer at least a tiny advantage, and as Darwin said many times to describe natural selection, nature detects the smallest grain in the balance (scale) of the struggle for life.  So even if there is no direct 'function,' every nucleotide functions in the sense of needing to be maintained in every cell, creating a thermodynamic or energy demand.  In this Newtonian view, which some evolutionary biologists hold or invoke quite strongly, there simply cannot be true selective neutrality--no genetic drift!


The relative success of any two genotypes in a population sample will almost never be exactly the same, and how could one ever claim that there is no functional reason for this difference?  Just because a statistical test doesn't find 'significant' differences in the probabilistic sense that it's not particularly unusual if nothing is going on, tiny differences nonetheless obviously can be real.  For example, a die that's biased in favor of 6 can, by chance, come up 3 or some other number more often in an experiment of just a few rolls. Significance cutoff values are, after all, nothing more than subjective criteria that we have chosen as conventions for making pragmatic decisions (the reason for dice being this way is interesting, but beyond our point here).

But what about the lightning strikes?  They are fortuitous events that, obviously, work randomly against individuals in a population in a way unrelated to their genotypes, thus adding some 'noise' to their relative reproductive success and hence of allele (genetic variant) frequencies in the population over time.  That noise would also be a form of true genetic drift, because it would be due to a cause unrelated to any function of the affected variants, whose frequencies would change, at least to some extent, by chance alone. A common, and not unreasonable selectionist response to that is to acknowledge that, OK! there's a minor role for chance, but nonetheless, on average, over time, the more efficient version must still win out in the end: 'must', for purely physical/chemical energetics if no other reasons.  That is, there can be no such thing as genetic drift on average, over the long haul.  Of course, 'overall' and 'in the end' have many unstated assumptions.  Among the most problematic is that sample sizes will eventually be sufficiently great for the underlying physical, deterministic truth to win out over the functionally unrelated lightning-strike types of factors.

On the other hand, the neutralists argue in essence that such minuscule energetic and many other differences are simply too weak to be detected by natural selection--that is, to affect the fitness of their bearers.  Our survival and reproduction are so heavily affected by those genotypes that really do affect them, that the remaining variants simply are not detectable by selection in life's real, finite daily hurly-burly competition. Their frequencies will evolve just by chance, even if the physical and energetic facts are real in molecular terms.

But to say that variants that are chemically or physically different do not affect fitness is actually a rather strong assertion! It is at best a very vague 'theory', and a very strong assumption of Newtonian (classical physics) deterministic principles. It is by no means obvious how one could ever prove that two variants have no effect.


So we have two contending viewpoints.  Everyone accepts that there is a chance component in survival and reproduction, but the selectionist view sees that component as trivial in the face of basic physical facts that two things that are different really are different and hence must be detectable by selection, and the other view that true equivalence is not only possible but widespread in life.

When you think about it, both views are so vague and dogmatic that they become largely philosophical rather than actual scientific views.  That's not good, if we fancy that we are actually trying to understand the real world.  What is the problem with these assertions?

Can drift be proved?
Maybe the simplest thing in an empirical setting would just be to rule out genetic drift, and show that even if the differences between two genotypes are small in terms of fitness there is always at least some difference.  But it might be easier to take the opposite approach, and prove that genetic drift exists.  To that, one must compare carriers of the different genotypes and show that in a real population context (because that's where evolution occurs) there is no, that is zero difference in their fitness. But to prove that something has a value of exactly zero is essentially impossible!


Is each outcome equally likely?  How to tell?


Again to a dice-rolling analogy, a truly unbiased die can still come up 6 a different number of times than 1/6th of the number of rolls: try any number of rolls not divisible by 6!  In the absence of any true theory of causation, or perhaps to contravene the pure thermodynamic consideration that different things really are different, we have to rely on statistical comparisons among samples of individuals with the different competing genotypes.  Since there is the lightning-strike source of at least some irrelevant chance effects and no way to know all the possible ways the genotypes' effects might differ truly but only slightly, we are stuck making comparisons of the realized fitness (e.g., number of surviving offspring) of the two groups.  That is what evolution does, after all.  But for us to make inferences we must apply some sort of statistical criteria, like a significance cut-off value ('p-value') to decide. We may judge the result to be 'not different from chance', but that is an arbitrary and subjective criterion.  Indeed, in the context of these contending views, it is also an emotional criterion.  Really proving that a fitness difference is exactly zero without any real external theory to guide us, is essentially impossible.

All we can really hope to do without better biological theory (if such were to exist) is to show that the fitness difference is very small.  But if there is even a small difference, if it is systematic it is the very definition of natural selection!  Showing that the difference is 'systematic' is easier to say than do, because there is no limit to the causal ideas we might hypothesize.  We cannot repeat the study exactly, and statistical tests relate to repeatable events.

There's another element making a test of real neutrality almost impossible.  We cannot sample groups of individuals who have this or that variant and who do not differ in anything else.  Every organism is different, and so are the details of their environment and lifestyle experiences.  So we really cannot ever prove that specific variants have no selective effect, except by this sort of weak statistical test averaging over non-replicable other effects that we assume are randomly distributed in our sample.  There are so many ways that selection might operate, that one cannot itemize them in a study and rule out all such things.  Again, selectionists can simply smile and be happy that their view is in a sense irrefutable.

A neutralist riposte to this smugness would be to say that, while it's literally true that we can't prove a variant to confer exactly zero effect, we can say that it has a trivially small effect--that it is effectively neutral.  But there is trouble with that argument, besides its subjectivity, which is the idea that the variant in question may in other times and genomic or environmental contexts have some stronger effect, and not be effectively neutral.


A related problem comes from the neutralists' own idea that by far most sequence variants seem to have no statistically discernible function or effect.  That is not the same as no effect.  Genomes are loaded with nearly or essentially neutral variants by the usual sampling strategies used in bioinformatic computing, such as that neutral sites have greater variation in populations or between species than is found in clearly functional elements.  But this in no way rules out the possibility that combinations of these do-almost-nothings might together have a substantial or even predominant effect on a trait and the carriers' fitness.


After all, is not that just what have countless very large-scale GWAS studies shown? Such studies repeatedly, and with great fanfare, report that there are tens, hundreds, or even thousands of genome sites that have very small but statistically identifiable individual effects but that even these together still account for only a minority of the heritability, the estimate of the overall amount of contribution that genetic variation makes to the trait's variation.  That is, it is likely that many variants that individually are not detectably different from being neutral may contribute to the trait, and thus potentially to its fitness value, in a functional sense.


This is one of the serious and I think deeply misperceived implications of the very high levels of complexity that are clearly and consistently observed, which raises questions about whether the concept of neutrality makes any empirical sense, and remains rather a metaphysical or philosophical idea.  This is related to the concepts of phenogenetic drift that we discussed in Part II of this series, in which the same phenotype with its particular fitness can be produced by a multitude of different genotypes--the underlying alleles being exchangeable.  So are they neutral or not?

In the end, we must acknowledge that selective neutrality cannot be proved, and that there can always be some, even if slight, selective difference at work.  Drift is apparently a mythical or even mystical, or at least metaphoric concept.  We live in a selection-driven world, just as Darwin said more than a century ago.  Or do we?  Tune in tomorrow.

Darwin the Newtonian. Part II. Is life really 'Newtonian'?

In yesterday's post I suggested that Darwin had a Newtonian view of the world, that is, he repeatedly and clearly described the organisms and diversity of life as the product of evolution, due to natural selection viewed as a force, which in an implicit way he likened to gravity.  At the same time, he knew that there was widespread evidence of various kinds for long-term evolutionary stasis, which a prominent geologist has recently called  "Darwin's null hypothesis of evolution," the idea that evolution does not occur if the environment stays the same.

That suggests that a changing environment leads to a changing mix of organisms that live in the environment, including of their genotypes.  It makes evolutionary sense, of course, because environments screen organisms for 'fitness'.  However, its negative--no change in the environment implies no evolution-- doesn't make sense and badly misrepresents what is widely assumed that we know about evolution. Even if we define evolution, as often done in textbooks, as 'change in gene frequencies' such change clearly occurs even in stable environments.  Mutations always arise, and selectively neutral variants, that is, that don't affect the fitness of their bearers, change in frequency by chance alone, not by natural selection, which means that at the genomic level evolution still occurs. It's curious that not only can organisms stay very similar in what seem like static environments, but also can be similar even in changing environments.

The idea of dual environmental-genetic stasis is an inference made from species that seem to stay similar for long time periods in environments that also appear similar--but how similar are they really?

Indeed, there are several problems with the widely if often implicitly assumed 'null hypothesis':

  1.  It is a very narrow assumption of the meaning of 'evolution', implicitly implying that it refers only to functionally important traits or their underlying genotypes. As we will see, there are ways for genetic change (and even trait change) to occur even in static environments, so that an unchanging environment doesn't imply no biological change.
  2.  It implies that 'the environment' actually stays the same, although 'environment' is hard to define.
  3.  It implies a tight essentially one-to-one fit between genotype and adaptive traits, so that in unchanging environments there will not be any functional genomic change.

All of these assumptions are wrong.  In essence, there cannot be 'the', or even 'a' null hypothesis for evolution.   Sexual reproduction, horizontal transfer, and recombination occur even without new sequence mutation.  To ignore that along with assuming a stationary environment, and adopt a null hypothesis that had anything like mathematical or Aristotelian rigor would be to reduce evolution's basis to something like this not-very-profound tautology:  Everything stays the same, if everything stays the same.

So let's look at this a little more closely
From the fossil record, we infer that some species stay the 'same' for eons, sometimes millions of years.  Then they change.  Gould and Eldridge called this 'punctuated equilibrium' and it was taken as a kind of up-dated version of Darwinism--mistakenly, because Darwin recognized it very clearly at least by the 6th edition of his Origin.  And while some aspects of animals and plants can hardly change in appearance for long time periods, close inspection shows that only some aspects of what can be preserved in fossils stays similar; other aspects typically change.  Also, speciation events occur and some descendants of an early form do change in form, even if the older species seems not to change. So we should be very careful even to suggest that environments or species really are not changing.

But mutations certainly occur and that means that even for a set of fossils that look the same, the genomes of the individuals would have varied, at least in non-functional sequence elements.  That itself is 'evolution', and it is misleading to restrict the term only to visible functional change.  But genetic drift is just the tip of the molecular evolution iceberg.  It is now very clear that there are many ways for an organism to produce what appears to be the same trait--and this is true both at the molecular and morphological levels.  That is, even a trait that 'looks' the same can be produced by different genotypes.  I wrote about this long ago in a rather simple vein, calling it phenogenetic drift, and Andreas Wagner in particular has written extensively about it, with sophisticated technical detail, in his book The Origin of Evolutionary Innovation, and this paper.  (The images are of my general paper and Wagner's book given just to break up the monotony of long text! ; he has written a more popular-level book as well called Arrival of the Fittest, which is a very good introduction to these ideas).

Recent exploration, with great detail



A modest statement of principl


Wagner explores this in many ways and among his views is that the ability of organisms to evolve innovative traits is based on the huge number of overlapping, essentially similar ways it can carry out its various functions, which allows mutations to add new function without jeopardizing the current one. Redundancy is protective against environmental changes as well as enabling new traits to arise.

This is in a sense no news at all. It was implicit in the very foundational concept of 'polygenic' control-- the determination of a trait by independent, or semi-independent of many different genes.  The way complex traits are thus constructed was clear to various biologists more than a century ago, even if the specific genes could not be identified (and the nature of a 'gene' was unknown).  A fundamental implication of the idea for our current purposes is that each individual with a given trait value (say, two people with the same height or blood pressure) can have its own underlying multi-locus genotype, which can vary among them.  Genotypes may predict phenotypes, but a phenotype does not accurately predict the underlying genotype (a deep lesson that many who promote simplistic models of causation in biomedical contexts should have learned in school).

And of course that does not even consider environmental effects, even though we know very well that for most characters of interest, normal or pathological, 'genetic' factors account only for a modest fraction of their variation. And, of course, if it's hard to identify contributing genetic variants, it's at least as difficult to identify the complex environmental contributors who make inference of phenotype from genotype so problematic. That is, neither does genotype reliably predict phenotype, nor does phenotype reliably predict genotype and the idea that they do so with 'precision' (to use todays' fashionable branding phrase) is very misleading.

In turn, these considerations imply that even if we accepted the idea of natural selection as a Newtonian deterministic force, it works at the level of the achieved trait, and can ignore (actually, is blinded to) the underlying causal genetic mechanism.  There can be extensive variation within populations in the latter, and change over time.  Just because two individuals now or in the past have a similar trait does not imply they have the same underlying genotype and hence does not imply there's been no 'evolution' even in that stable trait!

In this sense, evolution could be Newtonian, driven by force-like selection, and still not be genetically static.  But there's more.  How can there actually be stasis in a local environment?  If organisms adapt to conditions, then that in itself changes those conditions.  Even within a species, as more and more of its members take on some adaptive response to the environment, they change their own relative fitness by changing the mix of genotypes in their population, and that in turn will affect their predators and prey, their mate selection, and the various ways that the mix of resources are used in the local ecology.  If, say, the members of a species become bigger, or faster, or better at smelling prey, then the distribution of energy and species size must also change.  That is, the 'environment' cannot really remain the same.  That ecosystems are fundamentally dynamic has long been a core aspect of population ecology.

In a nutshell, it must be true that if genotypes change, that changes the local environment because my genotype is part of everybody else's 'environment'. In that sense, only if no mutations are possible can there be no 'evolution'. Even if one wants to argue that all mutations that arise are purged in order to keep the species the 'same', there will still be a dynamic mix of mutational variants over time and place.

One could even assert that an essence of Darwinism, literally interpreted, is that environments cannot be the same because the adaptation of one species affects others, even were new mutations not arising, because it affects the fitness of others. That is what his idea of the relentless struggle for existence among species meant, so stasis did cause him a bit of a problem, which he recognized in the later edition of the Origin.

I think that in essence Darwin viewed natural selection as being basically a deterministic force, like gravity, corresponding to Newton's second law of motion. And the idea of stasis corresponds to Newton's first law, of inertia. Today even many knowledgeable biologists seem to think in that way (for example, invoking drift only as a minor source of 'noise' in otherwise force-like adaptive evolution). Selective explanations are offered routinely as true, and the word 'force' routinely is used to explain how traits got here.
But there are deep problems even if we accept this view as correct.  Among other things, even if natural selection is really force-like, or if genetic drift exists as a moderating factor, then these factors should have some properties that we could test, at least in principle.  But as we'll see next time, it's not at all clear that that is the case.

Darwin the Newtonian. Part I. The Darwinian worldview

History shows that, even in science, things that everyone has long taken for granted may not be true.  Thinking in ways more carefully constructed to be restrained by what we actually know is often difficult, and the temptation is to believe what we want to believe. There are many normal, human, not to mention professional reasons for this.  But it's not good for science.  What may appear to be clear-cut 'objective' concepts about the material world can verge on the abstract or even philosophical, based on subjective opinion more than fact.  As we've discussed before, in a sense this is due to our need in evolutionary biology to rely on statistical tests based on internal comparisons, rather than to use statistical methods to test hypothesized, externally derived laws of nature (see this series and earlier--search on 'statistics' or 'p-value').

In 1859, Charles Darwin's Origin of Species culminated what considerable contemporary rumination had been suggesting, with his assertion that life today is the result of a material, historical process, by which current organisms have arisen by divergence from a common ancestry.  His synthesizing insight transformed biology in many ways.  Before that biology had largely been a descriptive science.  Before Darwin, with a few very speculative exceptions, the best causal explanations for the diversity and adaptations of organisms had been that God created them on an ad hoc basis.  Darwin saw otherwise, but his thinking was embedded in his era's general views about science.

Thanks to developments in the European Enlightenment period, by Darwin's time causation in nature was being viewed, by scientific thinkers at least, as based upon natural laws.  The Newtonian view of the cosmos was the prevalent one and, in keeping with this, Darwin adopted an implicitly quantitative, law-like view of biology.  As far as I know, Darwin was not a diligent student except in relation to areas like geology and botany, and he certainly was not mathematical (he himself said so).  However, he must have known at least something about Isaac Newton (a rather famous Cambridge predecessor).

Isaac Newton; 1689 by Godfrey KnellerWikipedia

Still, whatever he formally knew of Newton's laws of motion Darwin essentially accepted some of Newton's basic laws of motion, which we can state as follows:
1.  An object at rest remains at rest (law of inertia)
2.  Objects move or change motion only when force-like acceleration is applied, (and the greater the mass of the object the greater the force needed to change its motion)
3. Every action involves an equal and opposite reaction (when pushed, an object pushes back)

There are, I think, important analogs in Darwin's thinking, and there is still today widespread uncritical application of Newtonian-like thinking to Darwin's ideas.  The other day, I heard a deservedly famous and prominent geologist say that Darwin's 'Null hypothesis of evolution' was that unless the environment changes, no evolution will occur. This is analogous to the law of inertia, and I think it's actually fundamentally quite wrong, but we will see why it seems tempting and plausible.

The classical idea, still asserted without much if any questioning, is that organisms are fitted to their environment.  Analogous to the Newtonian law of inertia, if the environment doesn't change, neither will the organisms.  Darwin was, to my knowledge, not wholly explicit about this, but it was at the very least implicit in his view as expressed in The Origin of Species.  At least, by the 6th edition he recognized that there can be long time periods when organisms seemed not to change.

However, and this is analogous to Newton's second law, if the environment changes, then in a force-like way it screens the varying genomes of organisms, favoring those that are suited to the new conditions.  The force Darwin called natural selection.  I'm mixing bits of new and Darwin-time terminology here, but the gist of Darwin's view is that natural selection is a deterministic force, which he likened to the force of gravity in his law-like, deterministic worldview in regarding to 'motion' (change) in organisms.  Indeed, he many times asserted that the smallest difference among organisms would be detected and screened by selection.

After this has gone on for a while, the selective 'acceleration' ceases because the organisms are now adapted to their surroundings.  At that stage, the law of inertia takes over. His theory of inheritance was fundamentally wrong, but the Darwinian idea expressed in modern genetic terms is that the organisms in a population at any time and place vary genetically, and when the environment changes, those whose genotypes are best suited to the new environment will reproduce more prolifically, and will increase in frequency, driving inferior genotypes out of the population.

The Darwinian analogue to Newton's third law of motion is that changes in the nature of one organism in a local area improves its use of, and thereby alters, its local ecology.  The faster foxes catch the rabbits and proliferate. But this in turn makes the rabbits hoppier.  This then sets up a new force--in the local organisms--that Darwin referred to as the relentless 'struggle for existence.'

There are some issues in this view that are not well enough appreciated.  Darwin's endless struggle for existence suggests a continuing maelstrom of change, and yet it has been noticed that some species, based, for example, on ancient fossils.  Likewise, widely dispersed species that seemed similar across their areas of habitation implied that they had long had been static--because it takes a long time to spread over vast geographic areas.   In the case of some dinosaurs, a hundred or more million years, and based on some bacterial fossils, several billion.

Stromatolite (bacterial fossil); Western Australia, By Didier Descouens 


The idea this suggests is one of evolutionary stasis. This was recognized by Darwin, at least by the 6th edition of the Origin, and he mused over how periods of stasis would lead eventually to evolutionary change.   This idea, often now called 'punctuated equilibrium,' was claimed by Gould
in his final tome to be his own life's main discovery and contribution.  Perhaps he had not read Darwin closely enough?

An important point here is to recognize what Darwin was trying to account for.  Either selection is a relentless force-like aspect of nature, or there can be a static period when no force is being applied. How can both be true?

One answer is that there is no way for genotypes to be static, because mutations always arise.  Even if some are purged by selection's force, many will be selectively neutral and genomic evolution will always be occurring.  However, what we can see in fossils is only some aspects of morphology.  This means that while genomes are evolving, at least neutral parts, some aspects of traits persist, for adaptive or whatever other reason.

The idea of an evolutionary 'Null hypothesis' is hence elusive.  In one sense, some trait may not change unless the selective environment changes.  In another sense, selection can maintain functionally adaptive traits, while other traits and neutral DNA sequences change.  The traits may not 'evolve', but the sequence does.

Such ideas go against even Darwin's idea of life as an endless universal struggle, and perhaps why he had to do some rationalizing to account for apparent stasis.

Even this account for stasis of a single species would seem incompatible with the view of a relentless struggle among species that drives all of them in the endless rat-race of adaptation.  In that reality every part of an ecosystem affects every other part, so how can there be stasis?

We will think about some of these issues in the next three posts.  First, we'll ask whether life really can be viewed as 'Newtonian,' as Darwin did.  Then, we'll ask whether natural selection and genetic drift actually exist as they are universally characterized to be.  We'll see that our theories and our methods of inference, leave major issues open even about these fundamental aspects of the theory of life.

They were all my future specimens. And they died.

Without skeletal collections we'd struggle to do much evolutionary biology, especially when it comes to studying fossils.

We'd hate to let all those specimens go to waste, just languishing there in museum drawers. Sciencing them brings honor to their death. (Thanks for the new verb, Andy Weir.) But while we're learning from skeletons we can never forget that they're dead.

So although many of our samples are animals that were hunted by President Theodore Roosevelt (thanks Smithsonian!) or Major Powell-Cotton (thanks Powell-Cotton museum!), many of them, especially when it comes to human skeletons, are ones that died of "natural" causes.

You're thinking, well, duh. Well, yeah. Duh. But sometimes what's obvious still isn't so obviously important until someone goes to the trouble to very carefully consider it.

If the "osteological paradox" has already come to mind, that's probably because you're familiar with the classic paper "The Osteological Paradox" co-authored by a certain Mermaid and other former graduate school professors of mine.  Although the paper discusses issues that are more complicated and more specific than we need to hash out here, "osteological paradox" is a great term for the conundrum that scientists face when reconstructing things like health, fitness, and adaptation in past populations from the remains of the individuals who died.

Naturally, if you've been raised on "osteological paradox" thinking, it's one of the first things that comes to mind when you see a visually stunning study by my colleagues that analyzes pelvic morphology of dead individuals to reveal differing adaptive morphologies in the pelves of males vs. females.

Sexual dimorphism in the human pelvis has been known for quite some time, and it's already well-understood that the differences are largely located in the dimensions of a woman's birth canal. But this new study shows that differences are observable from birth and that women at post-reproductive ages do not retain the obstetrically-beneficial dimensions that younger women do during their fertile years. One of the arguments this new paper makes is that human female pelves are adapted to be most accommodating for childbirth during the child-bearing years. And that very well may be the case. However, these claims for adaptation, like most based on human skeletal samples, were based on women who were dead and, thus, not adapted.

In this context, the concluding paragraph of "The Osteological Paradox" is worth quoting:

"...choosing among competing interpretations of the osteological evidence requires tight control over cultural context as well as a deeper understanding of the biology of frailty and death. These problems deserve far more attention than they have received to date if we are to make sense of the biomedical consequences of the major social and environmental changes that have occurred during the course of cultural evolution."

And that could be extended to "biological evolution" as well. Maybe it has been in a later paper.

Anyway, when we're looking at dead humans with an evolutionary mindset, it's probably good to ask whether we can know if selective pressures were the same across the timespan covered by the sample. It's also probably good to ask whether environmental conditions were the same across the timespan covered by the sample. It's also probably good to sing this to ourselves as we design our evolutionary study of the human skeleton:



Şifalı Nisan Yağmurları


   Nisan ayının 14'ünde başlayıp, Mayıs ayının 14'ünde biten yağmurlara Nisan yağmurları deniyor. 

 Sonbahar yağmurlarından kaçınmak, bahar yağmurlarında ise sılovmoyşın, döne döne ıslanmak gerekiyor. (Fonda Teri Meri eşliğinde) 


⭐ 

Sebebi, hikmeti, şifası pek çok. Çektiğim fotoğraflar eşliğinde, aşk ile buyrun ♥




* Yılanların zehiri, balıkların incisi, hatta bal arısının balı gibi pek çok harikulade nimet hep bu yağmurun suyundan oluşuyor.

* Nisan yağmuru dertlere devâ, hastalıklara şifâ.

* Sular içerisinde en saf su Nisan yağmurunun suyu.

* Nisan yağmuru ile çalınan yoğurt tutar. (Tecrübe ile de sabittir diyorlar lakin ben ömrü hayatımda bir kere yoğurt mayaladım o da yağmura denk gelmedi)

* Nisan yağmurunda ıslanan yeni elbise çürümez. 

Saç dökülmez. 




 Nebevi olarak da nurlu beyanlarda şöyle geçiyor imiş:


 Beni hak Peygamber olarak gönderen Cenâb-ı Hakk’a yemin ederim ki, çocuğu olmayan bir erkek, bu sudan hanımına içirirse Allah'ın izni ile hanımı hamile kalır. 

 Hanımının başı ağrıyan bir erkek bu sudan hanımına içirirse, bu su ona (sıhhati için) yeterlidir. 

 Rüzgar ona zarar vermez, çirkin haller kendisine isabet etmez.

 Bel ağrısından, karın ağrısından, şikayeti kalmaz.

 Alaca hastalığından korkmaz.

 Göğüs ağrısı çekmez.

Kalbine gelen vesvese gönlünden çıkar gider.

 Ayrıca manevi hastalıklar için fayda vericidir.

 Yağmur , Allah'ın en son ve yeni yarattığı bir mahluktur. Bereketi en çok olandır.




 Risalei Nur'da Mirac kandili ile yağmur hakkında bir de güzel müjde var imiş. 


  Leyle-i Mi'racınızı tebrik ve içinde ettiğiniz duaların makbuliyetini rahmet-i İlahiyeden niyaz ederiz.  Ve bu havalide Mi'rac gecesinden bir gün evvel ve bir gün sonra müstesna bir surette rahmetin yağması işarettir ki, bu vatanda bir umumî rahmet tecelli edecek, inşâallah.




Velhasıl azizim,

Nisan yağmurundan kaçmayın, şemsiye kullanmayın, ıslanıverin gitsin. 

 Hatta benim gibi yalınayak dolaşın dışarlarda. 

(Nemli tiplerden olmadığım için aman hastalanırım diye düşünmedim. Koyverdim kendimi suya toprağa. Erzurum kızıyız evelallah) 



   Bu arada tesettürlü hanımcanlara bir küçük öneri, gece yağmurda sitenizde veya çevrenizde tenha yerlerde saçlarınızı da ıslatabilirsiniz. 

 Hatta ben ağaçların altına girip dalları silkeledim.  
 (Oynayın işte çocuklar gibi, içinizden nasıl geliyorsa)



Gelsin şifalar şifalar...



Not: 

 İstiyorum ki yazılarımı herkes okusun. O yüzden ecnebi arkadaşlar için sağ üste Google translate koydum ama çeviri yapınca cümlenin başı sonu ayrı telden çalıyor.
 Yani pek güvenmeyin derim. En iyisi bir Türk arkadaş bulun o anlatsın. 

 Mahrum kalmayın, üzülürüm sonra. Burada hepimize yer var... ♥

(Bu notu Türkçe yazmam da ayrı bir ironi lakin ne yapaydım comic İngilizcemle üstüme mi güldüreydim)



⭐ 



On shouting, "SEED MY BABY WITH MY VAGINAL MICROBES!"

Co-authored by Emily Pereira, Anthropology major, University of Rhode Island

When I was pregnant, the human microbiome was hot. And news about the microbiomes of newborns was even hotter, at least to my eyes and ears because I was on the verge of having one.

This was in 2014. Studies were starting to find that babies born via c-section have different microbiomes than babies born vaginally. These findings were being interpretively linked to health problems down the road. 

Here’s a write-up of one study of a few 4-month-olds that I came across while pregnant: “Infant gut microbiota influenced by cesarean section and breastfeeding practices; may impact long-term health


And today studies continue to pop-up that find differences in baby microbial composition and then suggest those differences may be linked to future health problems. For example, here’s a recent one from 2016 in JAMA Pediatrics
“CONCLUSIONS AND RELEVANCE The infant intestinal microbiome at approximately 6 weeks of age is significantly associated with both delivery mode and feeding method, and the supplementation of breast milk feeding with formula is associated with a microbiome composition that resembles that of infants who are exclusively formula fed. These results may inform feeding choices and shed light on the mechanisms behind the lifelong health consequences of delivery and infant feeding modalities.”
These discoveries about c-sections seem important because microbes are now famous for being linked to all kinds of health troubles. 

According to the American Microbiome Institute... 
“studies are finding that our bacteria (or lack thereof) can be linked to or associated with: obesity, malnutrition, heart disease, diabetes, celiac disease, eczema, asthma, multiple sclerosis, colitis, some cancers, and even autism.”
And of course many of those same things have been epidemiologically traced back to birth by c-section. Here’sa report on one study, “published in the British Medical Journal, [that] found that newborns delivered by C-section are more likely to develop obesity, asthma, and type 1 diabetes when they get older.”

Anotherfound that, “people born by C-section, more often suffer from chronic disorders such as asthma, rheumatism, allergies, bowel disorders, and leukaemia than people born naturally."

One can’t help but assume it’s all connected. If microbes are to blame for this list of problems and if c-sections are too and if c-sections are causing babies to have different microbiomes, then the following conclusion seems like a no-brainer: we need to be wiping c-sected babies with their mother’s vaginal juices.

So although I did basically nothing to prepare for a c-section (d’oh!), I imagined that if my childbirth came to surgery, that it would be really easy to avoid the risks to my baby's health by simply wiping him down with something soaked in my lady fluids.

I had even caught wind of a trial of this procedure, written-up somewhere, and so I mentioned it to my OB at a prenatal visit. She said she’d heard of it and that there was a term for it but the term escaped her. The idea excited her, but it wasn’t even remotely close to being part of regular clinical practice yet. Remember, this was summer 2014. Sensing it was too soon and out of reach, I changed the subject of conversation. Yet, I continued to believe that someone would just help me out with the whole vaginal swabbing thing if need be. It seemed simple enough. No biggie.

At the time, I didn’t Google around for tips or instructions so I don’t know what the Internet was offering up to would-be mothers/vaginal-microbe believers like me. But today it’s quite easy to find encouragement to D-I-Y transform your kid’s c-sected microbiome into a naturally-born one.

Here, let Mama Seeds explain:
“In the event of a c-section, be proactive. Mamas, we know this recommendation is not without its “icky-factor," but WOW it makes perfect sense when you think about it, and some believe it will be a standard recommendation in the future. Here goes: if your baby is born via c-section, consider taking a swab of your vaginal secretions and rubbing it on your baby’s skin and in her/his mouth. I know, ick. But when babies traverse the birth canal, they are coated in and swallowing those secretions/bacteria in a health-promoting way, so all you’re doing is mimicking that exposure. Don’t be afraid to ask your midwife or OB to help you collect the vaginal swabs—or do it yourself, if you’re comfortable. You have all the available evidence on your side.” - Michelle Bennett, MD is a full-time pediatrician, a Fellow of the American Academy of Pediatrics, a mother of two, and a founder of Mama Seeds.
Like I said, I didn’t have Mama Seeds. But I didn’t need Mama Seeds. While I was being wheeled into emergency cesarean surgery, I still shouted “SEED MY BABY WITH MY VAGINAL MICROBES!”

The reaction from the hospital staff? There was no reaction and, surprise surprise, there was no artificial seeding of my baby’s microbiome.

And that’s good. That’s how it should have gone down because my request was not based on scientific thinking. I hope you'll forgive me. I was pregnant. I wasn’t myself.

Slowly I’m becoming myself again, though, and thanks to a keen student, Emma Pereira, this post’s co-author, I’ve learned quite a bit about the science behind whether I should have seeded my newborn with my vaginal microbes. And the answer to anyone who’s wondering is a resounding NO. At least for now.

Here’s why.

1.   We don’t know if it’s necessary. Despite the increasing numbers of studies, no one to our knowledge has looked longitudinally at the microbiomes of humans born via c-section to find out if the changes detected (in very small samples) early on in these studies actually last, let alone if they can be causally linked to differences in health. It seems like the money and the technology is there to identify (via genetic sequencing) myriad microbial species, but the time and energy just isn’t there to do much else. So, although there is a growing literature, the dots aren’t connected yet. A graphic may help explain what we've learned: 



2.  You could actually harm your baby. Because there is currently no known good to come of seeding one’s c-sected baby with one’s vaginal microbes, there can only be bad. Yes, authors of this studypublished recently in Nature Medicine took a bunch of gauze that had been sitting in the mother’s vagina for an hour and swabbed 4 babies for a duration of about 15 seconds right after their birth by c-section and then found a significant difference in their microbiome at 30 days-old compared to babies who weren’t treated.  The microbiome wasn’t identical to vaginally born babies, but at least it wasn’t identical to those poor c-sected controls who didn’t get swabbed, right? Well, maybe wrong. First, please revisit number 1. And, second, maybe causing a baby to have a c-sected microbiome is not worse than seeding a baby with genital herpes, which is a very real possibility in practice, outside of these early, highly controlled pilot studies. As reported in Should C-section babies get wiped down with vagina microbes?“the procedure could unknowingly expose newborns to dangerous bugs, pathogens that babies born by C-section usually avoid. Group B streptococcus, which is carried by about 30 percent of women, can trigger meningitis and fatal septicemia... Herpes simplex virus can lead to death and disability in newborns. And chlamydia and gonorrhea can cause severe eye infections.”

So, again, as of right now, there is no reason to seed one's c-sected baby with one's vaginal microbes. And there are very good reasons not to! 

We think that the temptation to blame the rise of numerous complex health problems to something as simple (and easily knowable) as the way we’re born is similar to the temptation to reduce these very same complexities to what’s coded in the genome. For some people, maybe even many, it may turn out to be this simple! But we’re far from knowing whether that’s true. 

Spare your baby from meddling with his microbes until the evidence is there. 

Tutunmalı hayata




 Tutunmalı hayata

tüm acılarına rağmen  tüm yaşanmışlıkların   iki dudak arasında bıraktığı dudak kamaştıran midede  bıraktığı yanma hissine rağmen


Dünün bu güne  hazırladığı tuzaklara umursamadan gözyaşlarını en güzel günler umuduyla harmanlayıp  tuzunu yağını sevginle akıtıp sunabilmek akşam yemeğine .



 Yaşadıklarının yaşayacaklarına teminat olacağına, emin olmana rağmen acılarına  hayal kırıklıklarına  köşelerine ve tüm kırışmışlığına bir ütü vurabilmeli .


boyadığında görünmeyen ak saçların misali

seninse  aklından hiç çıkmayan yüreğinde 

derin yaralar bırakan yıpranmış bir ömürün

dip boyalarını yapabilmeli tüm yaşanmışlıklarınla 


Dem kokusunu çekebilmeli içine posasını  bırakabilmeli çaydanlığın en dibinde  


Yaralarını saklayabilmeli, başkalarını düşünürken kendini  nasıl unuttuğunu, önemsememeli

kendi pansumanını yapabilmeli sargılarını sarıp merhemini icat etmeyi bilmeli

kaybolan dünlerin bu günlere nasıl harabeler bıraktığını belli etmeden tutunmalı hayata

Her deprem sonrası dimdik durmalı ardçıların geleceğini bile bile yitirdiklerin için   hıçkıra hıçkıra ağlarken  bunu başkalarına duyurmamayı bilmeli .



  En zifir siyah  gecenin  içinden çekip alabilmeli bir ışık parçasını  aydınlatmalı tüm dünyayı

  Tutunmalı hayataa...
28.01.2012


Rare Disease Day and the promises of personalized medicine

O ur daughter Ellen wrote the post that I republish below 3 years ago, and we've reposted it in commemoration of Rare Disease Day, Febru...