A Season's diversion

Odes to the Season (sort of) 


Wikimedia commons images:Chrismas Magic 2008 - panoramio.jpg

The CRISPR's frustration
PaceJoyce Kilmer: Trees
I think that I shall never see
A gene as lovely as a tree.
A gene whose histones’ mouth is pres’d
‘Gainst coiled enhancer’s flowing twist;
A tree that links its genes all day,
For lofting leafy arms to splay;
No gene alone in Summer bears
A nested interaction’s fare;  
Upon whose basis shape is lain;
Who intimately breathes the rain.
Genes are named by fools like me,
But lonely genes can’t make a tree.



How do I leaf thee?
After Elizabeth Barrett Browning: Sonnet 43
How to I leaf thee?  Let me count the ways.
I leaf thee to the depth and breadth and height
My bows can reach, when flow’ring out of sight
For the ends of branching in ideal place.
I leaf thee to the level of every day’s
Most quiet need, by shade in clearing’s light.
I leaf thee fully, as my stomates’ right
I leaf thee petally, as I've ta’en from phloem.
I leaf thee with the pollen put to use
In my old grafts, and with my saplings’ fronds.
I leaf thee with a leaf I’m doomed to lose
With my lost seas’ns.  I leaf thee with the branch,
Stems, tips, of all my life; and, if Ground choose,
I shall but mulch thee better after death.


Instructor's lament
After Emily Dickinson: I am Nobody
I'm nobody!  Who are you?
Have you no funding, too?
Then there's a pair of us--don't tell!
They'd banish us--to teach!

How dreary to be somebody!
How pander, like a fraud
To boast your name the livelong day
To the reviewing bawd!


....And finally, here's another adulteration, that we might read, even in a season for joy, a thought for our ecologically destructive age:
Forest, Osaka, Japan.  Source: Wikimedia images

Evangeline 
After HW Longfellow: Evangeline (opening lines)
This is the foresters’ evil,
The sawing of pines and the hemlocks,
Once bearded with moss, and in garments green, that indistinct in the twilight,
Stood like Druids of old; but now with voices sad and prophetic,
Sounding like harpers' howl, weep tears that rest on their bosoms.
Loud from its raucous cuttings, the deep-voiced neighboring ocean
Hears, and in accents disconsolate answers the wail of the forest.
This was the forest primeval; but where are the hearts that beneath it
Leaped like the roe, when he heard in the woodland the oncoming humans?
Where is the thatched-wild vista, then home of a Halcyon fauna?





Source: Holly Wreath: Wiki images

Is genetics still metaphysical? Part V. Examples of conditions that lead to transformative insights

A commenter on this series asked what I thought that "a theory of biology should (realistically) aspire to predict?" The series (part 1 here) has discussed aspects of life sciences in which we don't currently seem to have the kind of unifying underlying theory found in other physical sciences. I'm not convinced that many people even recognize the problem.

I couched the issues in the context of asking whether the 'gene' concept was metaphysical or was more demonstrably or rigorously concrete.  I don't think it is concrete, and I do think many areas of the life sciences are based on internal generic statistical or sampling comparison of one sort of data against another (e.g., genetic variants found in cases vs controls in a search for genetic causes of disease), rather than comparing data against some prior specific theory of causation other than vacuously true assertions like 'genes may contribute to risk of disease'.  I don't think there's an obvious current answer to my view that we need a better theory of biology, nor of course that I have that answer.   

I did suggest in this series that perhaps we should not expect biology to have the same kind of theory found in physics, because our current understanding doesn't (or at least shouldn't) lead us to expect the same kind of cause-effect replicability.  Evolution--which was one of the sort of basic revolutionary insights in the history of science, and is about life, specifically asserts that life got the way it is by not being replicable (e.g., in one process, by natural selection among different--non-replicate--individuals).  But that's also a very vanilla comment.

I'll try to answer the commenter's question in this and the next post.  I'll do it in a kind of 'meta' or very generic way, through the device of presenting examples of the kind of knowledge landscape that has stimulated new, deeply synthesizing insight in various areas of science.

1.  Relativity
History generally credits Galileo for the first modern understanding that some aspects of motion appear differently from different points of view.  A classic case was of a ship gliding into the port of Genoa: if someone inside the ship dropped a ball it would land at his feet, just as it would for someone on land.  But someone on land watching the sailor through a window would see the ball move not just down but also along an angled path toward the port, the hypotenuse of a right triangle, which is longer than the straight-down distance.  But if the two observations of the same event were quantitatively different, which was 'true'?  Eventually, Einstein extended this question using images such as trains and railroad stations: a passenger who switched on two lightbulbs, one each at opposite ends of a train, would see both flashes at the same time.  But a person at a station the train was passing through would see the rearmost flash before the frontward one.  So what does this say about simultaneity?

These and many other examples showed that, unlike Isaac Newton's view of space and time as existing in an absolute sense, they depend on one's point of view, in the sense that if you adjust for that, all observers will see the same laws of Nature at work.  Einstein was working in the Swiss patent office and at the time there were problems inventors were trying to solve in keeping coordinated time--this affected European railroads, but also telecommunication, marine transport and so on. Thinking synthetically about various aspects of the problem led Einstein later to show that a similar answer applied to acceleration and a fundamentally different, viewpoint-dependent, understanding of gravity as curvature in space and time itself, a deeply powerfully deeper understanding of the inherent structure of the universe.  A relativisitic viewpoint helped account for the nature and speed of light, aspects of both motion and momentum, of electromagnetism, the relationship between matter and energy, the composition of 'space', the nature of gravity, of time and space as a unified matrix of existence, the dynamics of the cosmos, and so on, all essentially in one go.

The mathematics is very complex (and beyond my understanding!).   But the idea itself was mainly based on rather simple observations (or thought experiments), and did not require extensive data or exotically remote theory, though it has been shown to fit very diverse phenomena better than former non-relativisitc views, and are required for aspects of modern life, as well as our wish to understand the cosmos and our place in it.  That's how we should think of a unifying synthesis. 

The insight that led to relativity as a modern concept, and that there is no one 'true' viewpoint ('reference frame'), is a logically simple one, but that united many different well-known facts and observations that had not been accounted for by the same underlying aspect of Nature.

2.  Geology and Plate Techtonics (Continental Drift)
Physics is very precise from a mathematical point of view, but transformative synthesis in human thinking does not require that sort of precision.  Two evolutionary examples will show this, and that principles or 'laws' of Nature can take various forms.  

The prevailing western view until the last couple of centuries, even among scientists, was that the cosmos had a point Creation, basically in its present form, a few thousand years ago.  But the age of exploration occasioned by better seagoing technology and a spirit of global investigation, found oddities, such as sea shells at high elevations, and fossils.  The orderly geographical nature of coral atolls, Pacific island chains, volcanic and earthquake-prone regions was discovered.  Remnants of very different climates than present ones in some locations were found.  Similarly looking biological species (and fossils) were found in disjoint parts of the world, such as South Africa, South America, and eventually Antarctica.  These were given various local, ad hoc one-off explanations.  There were hints in previous work, but an influential author was Alfred Wegener who wrote (e.g., from 1912--see Wikipedia: Alfred Wegener) about the global map, showing evidence of continental drift, the continents being remnants of a separating jigsaw puzzle, as shown in the first image here; the second shows additional evidence of what were strange similarities in distantly separated lands.  This knowledge had accumulated by the many world collectors and travelers during the Age of Exploration. Better maps showed that continents seemed sometimes to be 'fitted' to each other like pieces of a jigsaw puzzle.  



Geological ages and continental movement (from Hallam, A Revolution in the Earth Sciences, 1973; see text)


Evidence for the continental jigsaw puzzle (source Wikipedia: Alfred Wegener, see text)

Also, if the world were young and static since some 'creation' event, these individual findings were hard to account for. This complemented ideas by early geologists like Hutton and Lyell around the turn of the 19th century. They noticed that deep time also was consistent with the idea of (pardon the pun) glacially slow observable changes in glaciers, river banks, and coastlines that had been documented since by geologists  Their idea of 'uniformitarianism' was that processes observable today occurred as well during the deep past, meaning that extrapolation was a valid way to make inferences.  Ad hoc isolated and unrelated explanations had generally been offered piecemeal for these sorts of facts.  Similar plants or animals on oceanically separated continents must have gotten there by rafting on detritus from rivers that had been borne to the sea.

Many very different kinds of evidence were then assembled and a profound insight was the result, which we today refer to by terms such as 'plate techtonics' or 'continental drift'.   There are now countless sources for the details, but one that I think is interesting is A Revolution in the Earth Sciences, by A. Hallam, published by Oxford Press in 1973, only a few years after what is basically the modern view had been convincingly accepted.  His account is interesting because we now know so much more that reinforces the idea, but it was as stunning a thought-change as was biological evolution in Darwin's time.  I was a graduate student at the time, and we experienced the Aha! realization that was taking place was that, before our very observational eyes so to speak, diverse facts were being fit under the same synthesizing explanation (even some of our faculty were still teaching old, forced, stable-earth explanations).

Among much else, magnetic orientation of geological formations, including symmetric stripes of magnetic reversals flanking the Mid-Atlantic Trench documented the sea-floor spreading that separated the broken-off continental fragments--the pieces of the jigsaw puzzle.  Mountain height and sea depth patterns gained new explanations on a geologic (and very deep time) scale, because the earth was accepted as being older than biblical accounts).  Atolls and the volcanic ring of fire are accounted for by continental motions.  

This was not a sudden one-factor brilliant finding, but rather the accumulation of centuries of slowly collected global data from the age of sail (corresponding to today's fervor for 'Big Data'?).  A key is that the local facts were not really accounted for by locally specific explanations, but were globally united as instances of the same general, globally underlying processes.  Coastlines, river gorges, mountain building, fossil-site locations, current evidence of very different past climates and so on were brought under the umbrella of one powerful, unifying theory.  It was the recognition of very disparate facts that could be synthesized that led to the general acceptance of the theory.  Indeed, subsequent and extensive global data, continue to this day to make the hypothesis of early advocates like Wegener pay off.

3.  Evolution itself
It is a 100% irrefutable explanation for life's diversity to say that God created all the species on Earth. But that is of no use in understanding the world, especially if we believe, as is quite obvious, that the world and the cosmos more broadly follows regular patterns or 'laws'.  Creationist views of life's diversity, of fossils, and so on, are all post hoc, special explanations for each instance. Each living species can be credited to a separate divine reason or event of creation.  But when world traveling became more common and practicable, many facts and patterns were observed that seemed to make such explanations lame and tautological at best.  For example, fossils resembled crude forms of species present today in the same area.  Groups of similar species are found living in a given region, with clusters of somewhat less similar species elsewhere. The structures of species, such as of vertebrates, or insects, showed similar organization, and one could extend this to deeper if more different patterns in other groups (e.g., that we now would call genera, phyla, and so on).  Basic aspects of inheritance seemed to apply to species, plant and animal alike.  If all species had been, say, on the same Ark, why were similar species so geographically clustered?

It dawned on investigators scanning the Victorian Age's global collections, and in particular Darwin and Wallace, that because offspring resemble their parents, though are not identical to them, and individuals and species have to feed on each other or compete for resources, that those that did better would proliferate more.  If they became isolated, they could diverge in form, and not only that but the traits of each species were suited to its circumstances, even if species fed off each other.  Over time this would also produce different, but related species in a given area.  New species were not seen directly to arise, but precedents from breeders' history showed the effects of selective reproduction, and geologists like Lyell had made biologists aware of the slow but steady nature of geological change.  If one accepted the idea that rather than the short history implied by biblical reading, life on earth instead had been here for a very long time, these otherwise very disparate facts about the nature of life and the reasons for its diversity might have a common 'uniformitarian' explanation--a real scientific explanation in terms of a shared causative process, rather than a series of unrelated creations: the synthesis of a world's worth of very diverse facts made the global pattern of life make causal and explanatory sense, in a way that it had never had before.

Of course the fact of evolution does not directly inform us about genetic causation, which has been the motivating topic of this series of posts.  We'll deal with this in our next post in the series.

Insight comes from facing a problem by synthesis related to pattern recognition
The common feature of these examples of scientific insight is that they involve synthesis derived from pattern recognition. There is a problem to be solved or something to be explained, and multiple facts that may not have seemed related and have been given local, ad hoc, one-off 'explanations'. Often the latter are forced or far-fetched, or 'lazy' (as in Creationism, because it required no understanding of the birds and the beasts). Or because the explanations are not based on any sort of real-world process, they cannot be tested and tempered, and improved.  And, unlike Creationist accounts, scientific accounts can be shown to be wrong, and hence our understanding improved.

In our examples of the conditions in which major scientific insights have occurred, someone or some few, looking at a wealth of disparate facts, or perhaps finding some new fact that is relevant to them, saw through the thicket of 'data', and found meaning.  The more a truly new idea strikes home, in each case, the more facts it incorporates, even facts not considered to be relevant.

Well!  If we don't have diverse, often seemingly disparate facts in genetics then nobody does!  But the situation now seems somewhat different from the above examples: indeed, with the precedents like those above, and several others including historic advances in chemistry, quantum physics, and astronomy, we seem to hasten to generalize, and claim our own synthesizing 'laws'.  But how well are we actually doing, and have we identified the right primary units of causation on which to do the same sort of synthesizing?  Or do we need to?

 I'll do my feeble best to offer some thoughts on this in the final part of this series.

Is genetics still metaphysical? Part IV: The 'specifisticity' of life

I had not intended a 4th post in the series (part 1 is here) about whether genetics is 'metaphysical', and what that might mean in our search to understand biological causation.  However, I just listened to a very good** discussion of the Copernican 'revolution' in understanding the movement we observe in the skies, and its relevance to scientific inference generally.  That led me to write this follow-up.

Copernicus showed that viewing the Sun rather than the Earth as the center of the known universe seemed more natural and in some ways easier than the prior Ptolemaic system.  Of course, the issues were deeper because they were relevant to theological explanations of existence, in which the Earth was the center of God's creation.

The Ptolemaic system that dated back to the classical era had led to the discovery that planets did not orbit the earth in simple circles; instead, to predict their position one had to invoke 'epicycles', short occasional small circular detours in planetary paths.  By placing the Sun at the center of celestial motions, the Copernican system was somewhat simpler, though it had its own equivalent of epicycles and wasn't entirely more obvious.  The important follow-up that did simplify things was Kepler's showing that the orbits were ellipses rather than circles.  This was much easier and more natural, even if also imperfect**, and indeed Tycho Brahe had shown ways to make Earth-centered planetary predictions that basically matched those of Copernicus, by having the moon and planets circle the Earth but the Sun circle the Earth, in a sense salvaging a geocentric cosmos.

The BBC program's discussion concerned the fact that at some point, truth becomes as much philosophical  as it is scientific. Matters of computational convenience were not necessarily about what view is 'true'.  Indeed, we may never be able to know absolute truth, and indeed that concept may be inherently philosophical, as pointed out on the program by the philosopher of science Massimo Pigliucci.  Thus, none of the competing planetary computational approaches necessarily need be 'true': each had its own level of complexity and limits of accuracy.  These days science takes the heliocentric system as obviously 'true', and in particular, that theological assertions that the Earth is the center of the universe is wrong.

More relevant to this post, however, I think that at some point every science becomes an axiomatic system, built upon terms and relationships that are defined but not examined or examinable in any further depth.  In classical geometry, for example, such terms include 'point' or 'line', and I think that currently, the 'electron' is like that: it is not clearly a 'thing' nor a 'wave' and if it is 'energy' that, too, is something whose effect can be defined observationally but whose essence is not further explored.  In a sense, the ultimate nature of these fundamentals is 'metaphysical' that is, is above the physical, something whose 'true' reality or essence we cannot see, at least in our current stage of a science.

Mathematics is an axiomatic system, based on entities like numbers and relationships like equality, addition, and so on.  We deduce things from these primary entities or prove their relative properties, but we can go a very long way in physics and cosmology using mathematics and the various principles and assumptions that we currently make.   We don't need to ask what an electron or electromagnetic wave 'is' in order to make precise use of it in building a model of physical existence, whether or not some day we will be able to probe such things more deeply.

If this is the basis of science, isn't the same true of the biological equivalent of what are currently considered its primary 'things'--that is, 'genes'?  I think not.

Genetics and metaphysics in a comparative context
In the previous posts in this series, I asked whether genetics (and by extension, evolution) was still essentially metaphysical.  Since the term 'gene' (and its historical antecedents) was defined by observable facts, such as patterns of inheritance, it was assumed to be a real entity, even if nothing was known or, at the time, knowable about its essence.  That was in the realm of speculation but, like electrons or geometrical points perhaps, it was at least assumed to be a kind of real 'thing' because it seemed to behave is if it were.  But what kind of thing was purely speculative and at best indirectly supported by evidence of its putative causal result, the directly observable traits of organisms.

As we tried to explain in this series, the idea of a 'gene' historically grew out of Mendel's work with carefully selected traits in peas, which he chose specifically as being useful for plant improvement. The resulting metaphoric or metaphysical notion of life's primary causal element (at the time, perhaps, literally comparable to atomic 'elements'--indicated by Mendel's use of that word) led to a perhaps unprecedentedly productive research strategy, which yielded the discovery of RNA and DNA itself, that particular regions of DNA code for the structure of proteins.

However, to a much under-appreciated extent, that very success itself led us to discover that no 'gene'--no bit of DNA--acts on its own, that only sometimes is a given coding stretch used to produce a given protein because of context-specific variable exon usage; that the code only works when other types of DNA-based codes are used to control the expression of the gene; that the code is sometimes altered after transcription; and much, much more. Indeed, it seems very possible that important or even fundamental aspects of what DNA does remain unknown.

We've dealt with some of these issues in many other posts.  In particular, the 'gene' is currently not a fundamental concept comparable to 'point', 'electron', 'square root', and so on.  It is not something that is a fundamental, irreducible causal element whose internal nature or identity cannot be probed more deeply. Unlike points and electrons, not all genes are identical; indeed no two genes are. A gene is not a primary causal unit in the same sense.  Earlier in this series we quoted a new suggested definition of 'gene' that makes this point by inadvertently being so useless that it might as well not have been suggested.

Today, except for some restricted, usually vague and often conveniently self-serving situations, we do not have a good concept of what a gene 'is'--or even if life is based on some such concept.  First, we define genes in terms of biological 'functions', that is, some purportedly causative outcomes that we like to measure, like the production of skin or eyes, or intelligence, or disease.  One thing that is relevant and does seem very clear is that aspects of DNA have functions that are fundamentally due to interaction, or even that interaction is all that DNA function is about.  The word ('gene') no longer unambiguously refers to a clear kind of basic element: its referents have to be defined ad hoc. The same purported unit has different causative aspects in different experimental and natural contexts.  It is also not a proper fundamental unit because in today's usages a 'gene' has internal components (in DNA sequence, modification by other chemicals etc.).  In some selective situations the word has utility (e.g., referring to the BRCA1 gene in a causative context related to breast cancer), but even that is typically limited, and worse, limited to a typically unknown and/or variable extent. These statements reflect the success of the science to date, but also show how deep our need for conceptual reform really is.

Life is specifisitic 
It was probably understatement on our part to have ended the 3rd element of this series by saying that the 'gene' is still, and perhaps essentially, a metaphysical concept.  That's because it's not really clear, yet, whether it even is a coherent concept, much less whether it, or any fundamental unit of causation applies to life in the way such concepts (may) apply to physics and chemistry.  In a sense, perhaps similar to the views of Einstein and Ernst Mach that we touched on in part I of this series, the fundamental units of life are relationships, not things.  This may be similar to the issue in physics about when or whether or how reality is made of waves or things.  But there would be more, because of the fact that unlike physics, the fundamental units are not replicable the way electrons are.

Perhaps a different unique-context-centered causative concept is needed for understanding the essential nature of life: a  fundamental 'specifismology'.  At this stage of our knowledge, in particular in relation to prediction, and also in the political economy of contemporary science, we are far from that level of of understanding. But we've said that many times before!

It is in the nature of science that how and when we'll get a break of deeper insight, no one can say.
-------------------------------------------------


**You would probably enjoy this podcast or online-stream.  It is from the BBC Radio 4 science program series, Discovery.  The discussion of Copernicus and his work is very interesting, but as a science program, the Beeb committed at least a minor error in a kind of de facto assumption that there is some sort of underlying truth in this aspect of cosmology and the history concerns which measurement approach is most accurate or easiest.  That is essentially a Newtonian view, of space as having an absolute reference frame for which one tries to find the easiest computational system. That's what 'the Solar System' means: we place the Sun at the origin of 3-dimensional linear coordinates.  However, in post-Einstein relativistic times we now accept that there is no reference frame from which to decide which view is 'true'; heliocentric models are simply more practicably useful.  Whether the relativistic nature of reference frames applies to biology in a seriously relevant way is a separate, but interesting question.

In Man's Evolution, Woman Evolve Too

Evolution is true but people with large followings should fear the cultural consequences of their adaptive tales. I'm talking specifically about people who explain human evolution and even more specifically about this:

https://whyevolutionistrue.wordpress.com/2016/12/14/the-ideological-opposition-to-biological-truth/.

[Please go there and grapple with it if you wish, or just go there, get the gist and come back.]

It's not that Jerry Coyne's facts aren't necessarily facts, or whatever. It's that this point of view is too simple and is obviously biased toward some stories, ignoring others. And this particular one he shares in this post has been the same old story for a long long time.

What about the other side of the body size sexual dimorphism story?

What about the women?

Selection could well be the reason they stop growing before men and why they end up having smaller bodies than men, on average.

Perhaps men can make babies while growing, but perhaps women can't. Energetically, metabolically. So reproduction wins over growth. We reach sexual maturity and stop growing. Is that just a coincidence?

Why doesn't this (and other tales) fit alongside the big-aggressive-males-take-all explanation for sexual dimorphism? #evolution

Not only is it absent, but selection on women's bodies be the driving force (if such a thing could be identified) and, yet, it's as if women don't exist at all in these tales except as objects for males to fight over or to fuck (but *thankfully* there's that female choice!).

Knowledgeable people aren't objecting to facts, as Coyne suggests. They're objecting to biased story-telling and its annoying and harmful consequences, which Coyne doesn't acknowledge or grapple with in his piece.

Check out the discussion that ensued starting here:

UPDATE: Last night Jesse Singal at NYMag wrote a thoughtful piece about it: http://nymag.com/scienceofus/2016/12/not-all-critiques-of-evolutionary-psychology-are-the-same.html 

Is genetics still metaphysical? Part III. Or could that be right after all?

In the two prior parts of this little series (I and II), we've discussed the way in which unknown, putatively causative entities were invoked to explain their purported consequences, even if the agent itself could not be seen or its essence characterized.  Atoms and an all-pervasive ether are examples. In the last two centuries, many scientists followed some of the principles laid down in the prior Enlightenment period, and were intensely empirical, to avoid untrammeled speculation.  Others followed long tradition and speculated about the underlying essentials of Nature that could account for the empiricists' observations. Of course, in reality I think most scientists, and even strongly religious people, believed that Nature was law-like: there were universally true underlying causative principles.  The idea of empiricism was to escape the unconstrained speculation that was the inheritance even from the classical times (and, of course, from dogmatic religious explanations of Nature).  Repeated observation was the key to finding Nature's patterns, which could only be understood indirectly.  I'm oversimplifying, but this was largely the situation in 19th and early 20th century physics and it became true of historical sciences like geology, and in biology during the same time.

At these stages in the sciences, free-wheeling speculation was denigrated as delving in metaphysics, because only systematic empiricism--actual data!--could reveal how Nature worked. I've used the term 'metaphysics' because in the post-Enlightenment era it has had and been used in a pejorative sense.  On the other hand, if one cannot make generalizations, that is, infer Nature's 'laws', then one cannot really turn retrospective observation into prospective prediction.

By the turn of the century, we had Darwin's attempt at Newtonian law-like invocation of natural selection as a universal force for change in life, and we had Mendel's legacy that said that causative elements, that were dubbed 'genes', underlay the traits of Nature's creatures.  But a 'gene' had never actually been 'seen', or directly identified until well into the 20th century. What, after all, was a 'gene'? Some sort of thing?  A particle?  An action?  How could 'it' account for traits as well as their evolution?  To many, the gene was a convenient concept that was perhaps casually and schematically useful, but not helpful in any direct way.  Much has changed, or at least seems to have changed since then!

Genetics is today considered a mainline science, well beyond the descriptive beetle-collecting style of the 19th century.  We now routinely claim to identify life's causative elements as distinct, discrete segments of DNA sequence, and a gene is routinely treated as causing purportedly 'precisely' understandable effects.  If raw Big Data empiricism is the Justification du Jour for open-ended mega-funding, the implicit justifying idea is that genomics is predictive the way gravity and relativity and electromagnetism are--if only we had enough data!  Only with Big Data can we identify these distinct, discrete causal entities, characterize their individual effects and use that for prediction, based on some implicit theory or law of biological causation.  It's real science, not metaphysics!

But even with today's knowledge, how true is that?

The inherent importance of context-dependency and alternative paths
It seems obvious that biological causation is essentially relative in nature: it fundamentally involves context and relationships.  Treating genes as individual, discrete causal agents really is a form of metaphysical reification, not least because it clearly ignores what we know about genetics itself. As we saw earlier, today there is no such thing as 'the' gene, much less one we can define as the discrete unit of biological function.  Biological function seems inherently about interactions.  The gene remains in that sense, to this day, a metaphysical concept--perhaps even in the pejorative sense, because we know better!

We do know what some 'genes' are: sequences coding for protein or mature RNA structure.  But we also know that much of DNA has function unrelated to the stereotypical gene.  A gene has multiple exons and often differently spliced (among many other things, including antisense RNA post-transcription regulation, and RNA editing), combined with other 'genes' to contribute to some function.  A given DNA coding sequence often is used in different contexts in which 'its' function depends on local context-specific combinations with other 'genes'.  There are regulatory DNA sequences, sequences related to the packaging and processing of DNA, and much more.  And this is just the tip of the current knowledge iceberg; that is, we know there's the rest of the iceberg not yet known to us.

Indeed, regardless of what is said and caveats offered here and there as escape clauses, in practice it is routinely assumed that genes are independent, discrete agents with additive functional effects, even though this additivity is a crude result of applying generic statistical rather than causal models, mostly to whole organisms rather than individual cells or gene products themselves.  Our methods of statistical inference are not causal models as a rule but really only indicate whether, more probably than not, in a given kind of sample and context a gene actually 'does' anything to what we've chosen to measure. Yes, Virginia, the gene concept really is to a great extent still metaphysical.

But isn't genomic empiricism enough?  Why bother with metaphysics (or whatever less pejorative-sounding term you prefer)? Isn't it enough to identify 'genes', however we do it, and estimate their functions empirically, regardless of what genes actually 'are'?  No, not at all.  As we noted yesterday, without an underlying theory, we may sometimes be able to make generic statistical 'fits' to retrospective data, but it is obvious, even in some of the clearest supposedly single-gene cases, that we do not have strong bases for extrapolating such findings in direct causal or predictive terms.  We may speak as if we know what we're talking about, but those who promise otherwise are sailing as close to the wind as possible.

That genetics today is still rather metaphysical, and rests heavily on fancifully phrased but basically plain empiricism, does not gainsay that fact that we are doing much more than just empiricism, in many areas, and we try to do that even in Big Promise biomedicine.  We do know a lot about functions of DNA segments.  We are making clear progress in understanding and combatting diseases and so on.  But we also know, as a general statement, that even in closely studied contexts, most organisms have alternative pathways to similar outcomes and the same mutation introduced into different backgrounds (in humans, because the causal probabilities vary greatly and are generally low, and in different strains of laboratory animals) often has different effects.  We already know from even the strongest kind of genetic effects (e.g., BRCA1 mutations and breast cancer) that extrapolation of future risk from retrospective data-fitting can be grossly inaccurate.  So our progress is typically a lot cruder than our claims about it.

An excuse that is implicit and sometimes explicit is that today's Big Data 'precision, personalized' medicine, and much of evolutionary inference, are for the same age-old argument good simply because they are based on facts, on pure empiricism, not resting on any fancy effete intellectual snobs' theorizing:  We know genes cause disease (and everything else) and we know natural selection causes our traits.  And those in Darwinian medicine know that everything can be explained by the 'force' of natural selection.  So just let us collect Big Data and invoke these 'theories' superficially as justification, and mint our predictions!

But--could it be that the empiricists are right, despite not realizing why?  Could it be that the idea that there is an underlying theory or law-like causal reality, of which Big Data empiricism provides only imperfect reflections, really is, in many ways, only a hope, but not a reality?

Or is life essentially empirical--without a continuous underlying causal fabric?
What if Einstein's dream of a True Nature, that doesn't play dice with causation, was a nightmare.  In biology, in particular, could it be that there isn't a single underlying, much less smooth and deterministic, natural law?  Maybe there isn't any causal element of the sort being invoked by terms like 'gene'.  If an essential aspect of life is its lack of law-like replicability, the living world may be essentially metaphysical in the usual sense of there being no 'true' laws or causative particles as such. Perhaps better stated, the natural laws of life may essentially be that life does not following any particular law, but is determined by universally unique local ad hoc conditions.  Life is, after all, the product of evolution and if our ideas about evolution are correct, it is a process of diversification rather than unity, of local ad hoc conditions rather than universal ones.

To the extent this is the reality, ideas like genes may be largely metaphysical in the common sense of the term.  Empiricism may in fact be the best way to see what's going on.  This isn't much solace, however, because if that's the case then promises of accurate predictability from existing data may be culpably misleading, even false in the sense that a proper understanding of life would be that such predictions won't work to a knowable extent.

I personally think that a major problem is our reliance on statistical analysis and its significance criteria, that we can easily apply but that have at best only very indirect relationship to any underlying causal fabric, and that 'indirect' means largely unknowably indirect. Statistics in this situation is essentially about probabilistic comparisons, and has little or often no basis in causal theory, that is, in the reason for observed differences.  Statistics work very well for inference when properly distributed factors, such as measurement errors, are laid upon some properly framed theoretically expected result.  But when we have no theory and must rely on internal comparisons and data fitting, as between cases and controls, then we often have no way to know what part of our results has to do with sampling etc. and where any underlying natural laws, might be in the empirical mix--if such laws even exist.

Given this situation, the promise of 'precision' can be seen starkly as a marketing ploy rather than knowledgeable science.  It's a distraction to the public but also to the science itself, and that is the worst thing that can happen to legitimate science.  For example, if we can't really predict based on any serious-level theory, we can't tell how erroneous future predictions will be relative to existing retrospective data-fitting so we can't, largely even in principle, know how much this Big Data romance will approximate any real risk truths, because true risks (of some disease or phenotype) may not exist as such or may depend on things, like environmental exposures and behavior, that cannot be known empirically (and perhaps not even in theory), again, even in principle.

Rethinking is necessary, but in our current System of careerism and funding, we're not really even trying to lay out a playing field that will stimulate the required innovation in thought.  Big Data advocates sometimes openly, without any sense of embarrassment, say that serendipity will lead those with Big Data actually to find something important.  But deep insight may not be stimulated as long as we aren't even aware that we're eschewing theory basically in favor of pure extrapolated empiricism--and that we have scant theory even to build on.

There are those of us who feel that a lot more attention and new kinds of thinking need to be paid to the deeper question of how living Nature 'is' rather than very shaky empiricism that is easy, if costly, to implement but whose implications are hard to evaluate. Again, based on current understanding, it is quite plausible that life, based on evolution which is in turn based on difference rather than replicability, simply is not a phenomenon that obeys natural law in the way oxygen atoms, gravity, and even particle entanglement do.

To the extent that is the case, we are still in a metaphysical age, and there may be no way out of it.

Is genetics still metaphysical? Part II. Is that wrong?

What is the role of theory vs empiricism in science?  How do these distinctions apply to genetics?

Yesterday, we discussed some of the history of contesting views on the subject.  Much of the division occurred before there was systematically theoretical biology.  In particular, when creationism, or divine creative acts rather than strictly material processes, was the main explanation for life and its diversity, the issues were contended in the burgeoning physical sciences, with its dramatic technological advances, and experimental settings, and where mathematics was a well-established part of the science and its measurement aspects.


Around the turn of the 20th century, Darwinian evolution was an hypothesis that not even all the leading biologists could accept.  Inheritance was fundamental to any evolutionary view, and inherited somethings seemed obviously to be responsible for the development of organisms from single cells (fertilized eggs). Mendel had shown examples of discretely inherited traits, but not all traits were like that.  Ideas about what the inherited units were (Darwin called them gemmules, Mendel called them Elements, and hereafter I'll use the modern term 'genes') were simply guesses (or just words).  They were stand-ins for what was assumed to exist, but in the absence of their direct identification they were, essentially, only metaphysical or hypothetical constructs.


The cloak of identity had serious implications.  For example, evolution is about inherited variation, but genes as known in Darwin's time and most of the later 19th century didn't seem to change over generations, except perhaps due to grotesquely nonviable effects called 'mutations'.  How could these 'genes', whatever they were, be related to evolution, which is inherently about change and relative positive effects leading to selection among organisms that carried them?


Many critics thought the gene was just a metaphysical concept, that is, used for something imagined, that could not in a serious way be related to the empirical facts about inherited traits. The data were real, but the alleged causal agent, the 'gene', was an unseen construct, yet there was a lot of dogma about genes.  Many felt that the life sciences should stick to what could be empirically shown, and shy away from metaphysical speculation.  As we saw yesterday, this contention between empiricism and theory was a serious part of the debate about fundamental physics at the time.


That was more than a century ago, however, and today almost everyone, including authors of textbooks and most biologists themselves, asserts that we definitely do know what a gene is, in great detail, and it is of course as real as rain and there's nothing 'metaphysical' about it.  To claim that genes are just imagined entities whose existential reality cannot be shown would today be held to be not just ignorant, but downright moronic.  After all, we spend billions of dollars each year studying genes and what they do!  We churn out a tsunami of papers about genes and their properties, and we are promised genetically based 'precision' medicine, and many other genetic miracles besides, that will be based on identifying 'genes for' traits and diseases, that is enumerable individual genes that cause almost any trait of interest, be it physical, developmental, or behavioral.  That's why we're plowing full budget ahead to collect all sorts of Big Data in genetics and related areas.  If we know what a gene is then the bigger the data the better, no?


Or could it be that much of this is marketing that invokes essentially metaphysical entities to cover what, despite good PR to the contrary, remains just empiricism?  And if it is just empiricism, why the 'just'?  Isn't it good that, whatever genes 'are', if we can measure them in some way we can predict what they do and live to ripe old ages with nary a health problem?  Can't we in fact make do with what is largely pure empiricism, without being distracted by any underlying law of biological causation, or the true nature of these causative entities--and deliver the miraculous promises? The answer might be a definitive no!


The metaphysical aspects of genes, still today

In essence, genes are not things, they are not always discrete DNA sequence entities with discrete functions, and they are not independently separable causative agents.  Instead, even the term 'gene' remains a vague, generically defined one.  We went through decades in the 20th century believing that a gene was a distinct bit of DNA sequence, carrying protein code. But it is not so simple.  Indeed, it is not simple at all. 

It is now recognized by those who want to pay attention to reality, that the concept of the 'gene' is still very problematic, and to the extent that assertions are made about 'genes' they are metaphysical assertions, no matter how clothed in the rhetoric of empiricism they may be.  For example, many DNA regions code for functional RNA rather than protein.  Much DNA function has to do with expression of these coding regions.  Many coding regions are used in different ways (for example, different exon splicing) in different circumstances.  Some DNA regions act only when they are chemically modified by non-DNA molecules (and gene expression works exclusively in that way). Some of 'our' DNA is in microbes that are colonizing us.  And 'traits' as we measure them are the result of many--often hundreds or more--DNA elements, and of interactions among cells.  Each cell's DNA is different at least in some details from that of its neighbors (due to somatic mutation, etc.).  And then there is 'the' environment!  This is central to our biological state but typically not accurately measurable.


Some discussion about these issues can be seen in a report of a conference on the gene concept in 2011 at the Santa Fe Institute.  Even earlier, in 2007 when it seemed we had really learned about genomes, hardly suspecting how much more there was (and is) still to be learned, a review in Genome Research was defined in an almost useless way as follows: 

Finally, we propose a tentative update to the definition of a gene: A gene is a union of genomic sequences encoding a coherent set of potentially overlapping functional products. Our definition sidesteps the complexities of regulation and transcription by removing the former altogether from the definition and arguing that final, functional gene products (rather than intermediate transcripts) should be used to group together entities associated with a single gene. It also manifests how integral the concept of biological function is in defining genes.
Really?!  Is that a definition or an academically couched but empty kicking of the can down the road while seeming to be knowledgeable and authoritative?  Or is it simply so empty as to be risible?

There are many now who advocate a 'Third Way' that in a rather generic sense of advocating less dogma and more integrative and indeed innovative or integrative approaches.  But even this doesn't say what the Third Way actually is, though one thing for sure is that it's every Third Way member's favorite way of coopting the concept of biological causation as his or her own.  I'm being cynical, and I'm associated with the Third Way myself and believe that serious rethinking about biological causation and evolution is in order, but that doesn't seem to be too unfair a way to characterize the Third Way's characterization of mainline genome-centered or perhaps genome-obsessed thinking. At least, it acknowledges that we don't just have 'genes' and 'environment', but that biological causality is based fundamentally on interactions of many different kinds. 

DNA is basically an inert molecule on its own
In genetic terminology, DNA is basically an inert molecule.  That is, whatever you want to call genes act in a context-specific way, and this goes beyond what is known as cis interactions among local DNA elements (like regulatory sequences flanking coding sequences) along a given strand. Instead, genetic function is largely a trans phenomenon, requiring interaction among many or even countless other parts of DNA on the different chromosomes in the cell.  And often if not typically, nothing happens until the coded product--RNA or protein--itself is modified by or interacts with other compounds in the cell (and responds to external things the cell detects).

Beyond even that complexity provides comparable evolutionary or physiological complexity.  There are many, perhaps often also countless alternative biological pathways to essentially the same empirical result (say, height or blood pressure or intelligence).  These causally equivalent combinations, if we can even use the term 'causal', are many and un-enumerated, and perhaps un-enumerable.  The alternatives may be biochemically different, but if it they confer essentially no difference in terms of natural selection, they are evolutionarily as well as physiologically equivalent. Indeed, the fact is that every cell, and hence every organism is different in regard to the 'causal' bases of traits.  We may be able to define and hence measure some result, such as blood pressure or reproductive fitness; but to speak of causes as if they are individually distinct or discrete entities is still essentially being metaphysical. Yet, for various sociocultural and economic reasons, we seem unwilling to acknowledge this.

You might object by saying that in fact most geneticists, from Francis Collins down to the peons who plead for his funding support, are being essentially empirical and not indulging in theory.  Yes, they drop words like 'gene' and 'epigenome' and 'microbiome' or 'network' or 'system', but this are on or over the edge of metaphysics (speculative guessing).  Many who feed at the NIH (and NSF) trough might proudly proclaim that they are in fact not dealing with airy-fairy theory, but simply delivering empirical and hence practical, useful results.  They do genomewide mapping because, or even proudly declaring, they have no causative theory for this disease or that behavioral trait.  Usually, however, they confound statistical significance with formal theory, even if they don't so declare explicitly.

For example, most studies of genotypes and genetic variation relative to traits like disease, are based on internal comparisons (cases vs control, tall vs short, smart vs not-smart, criminal vs non-criminal, addictive vs sober, etc.).  They don't rest on any sort of theory except that they do implicitly identify entities like 'genes'.  Often this is so metaphysical as to be rather useless, but it is only right to acknowledge that these results are occasionally supported by finding an indicated 'gene' (DNA sequence element), whose manipulation or variation can be shown to have molecular function relevant to the trait, at least under some experimental conditions.  But this causative involvement is usually quite statistical, providing only weak causative effects, rather than in any clear sense deterministic.  We are enabled by this largely pure empiricism to argue that the association we saw in our retrospective study is what we'll see prospectively as causation in the future.  And we now know enough to know that when it seems to work it is (as, indeed, in Mendel's own time) it's only the simplest tip of the causative iceberg.

We are tempted to believe, and to suggest, that this 'gene' (or genetic variant, an even cruder attempt at identifying a causative element) will be predictive of, say, a future disease at least in some above-average sense. That is, even if we don't know the exact amount of associated risk.  But even that is not always the case: the associated risks are usually small and data-specific and often vary hugely from study to study, over time, or among populations.  That means, for example, that people--typically by far most people--carrying the risk variant will not get the associated disease! It may often do nothing when put into, say, a transgenic mouse.  The reason has to be context, but we usually have scant idea about those contexts (even when they are environmental, where the story is very similar). That is a profound but far under-appreciated (or under-acknowledged) fact with very widespread empirical support!


Indeed, the defense of pure empiricism is one of convenience, funding-wise among other reasons; but perhaps with today's knowledge all we can do if we are wedded to Big Data science and public promises of 'precision' genomic prediction.  When or if we have a proper theory, a generalization about Nature, we can not only test our empirical data agains the theory's predictions, but also use the theory to predict new, future outcomes with a convincing level of, yes, precision. Prediction is our goal and the promises (and, notably, research funding) rest on prediction, not just description. So, as Einstein (and Darwin) felt, an underlying theory of Nature makes data make sense. Without it we are just making hopeful guesses.  Anyone who thinks we have such a theory based on all the public rhetoric by scientists is, like most of the scientists themselves, confusing empiricism with theory, and description with understanding. Those who are thoughtful know very well that they are doing this, but can't confess it publicly.  Retired people (like me) are often less inhibited!

Or could there perhaps be another way to think about this, in which genetics as currently understood remains largely metaphysical, that genetics is real but we simply don't yet have an adequate way of thinking that will unite empiricism to some underlying global reality, some theory in the proper scientific sense?


Tomorrow we'll address the possibility that genetics is inherently metaphysical in that there isn't any tractably useful universal natural law out there to be discovered.

Is genetics still metaphysical? Part I. Some general history.

In very broad terms, modern science has had debates about two basic kinds of approaches to understanding the world.  To over-simplify, they are the empirical and the theoretical approaches. Some argue that we can know only what we can detect with our sensory systems (and machines to extend them), but we can never know what general causal principles account for those data, or even if such real, true principles exist. Others view science's essential job as not just accumulating collections of data, which are necessarily imperfect, but to use such observations to build a picture of the true, or perfect underlying regularity--the 'laws' of Nature.

In the former case we just have to make measurements and try to show the ways in which comparable situations lead to comparable outcomes.  In the latter, we want what we call 'theory', that is, perfect generalizations that tell us how a given situation will turn out, and what the causal reasons are.  The standard assumption of the physical sciences is that Nature is, indeed, universally law-like.  Variables like the gravitational constant and the speed of light really are universally, precisely constant.

These are age-old differences, often 'just' philosophical, but they're quite important.  Comparably important are the still-unanswered question as to whether any phenomena in Nature is irreducibly probabilistic rather than deterministic, or whether probabilistic aspects of Nature really just reflect our imperfect sampling and measurement. This is the important distinction between epistemology--how we know things, and ontology--how things really are.  Can we ever tell the difference?

Empiricism is in some ways the easy part.  We just go out and make measurements and let them accumulate so we can generalize about them.  That's a lot of slogging to get the data, but all you have to do is be systematic and careful.  Don't give me airy generalizations, just the facts, please!

In other ways, theory is the easy part.  All you have to do is sit in your armchair, as the proverbial denigratory model has it, and make up something that sounds exotic (or even mathematically intricate) and claim you know how Nature 'is'.  Data are imperfect, so don't bother me about that! There are long traditions in both kinds of approach, and to a great extent it's only been the past few hundred years in which there has been melding of these two basic approaches.

Often, theory hypothesizes some fundamental objects whose properties and actions can only be seen indirectly, as they are manifest in measurable phenomena. Here there is a delicate boundary between what is essentially 'metaphysical' as opposed to real.  Many object to the use of metaphysical concepts and claims as being essentially untestable, and argue that only empiricism is real and should be taken seriously.  In the 19th and early 20th centuries, as technology revealed more and more about unseen Nature, things that were not yet seen directly but that could be hypothesized and assigned to things we could measure, we taken as true by some but denigrated as metaphysical by pure empiricists.

These distinctions were never that clear, in my view (even if they provided jobs for philosophers to write about).  Empiricism is retrospective but understanding requires some sorts of predictability, which is prospective.  If we cannot reliably generalize, if the same conditions don't always lead to the same result, how can the observing the former lead us to the latter?  Predictive power is largely what we want out of science, even if it's just to confirm our understanding of Nature's laws.

Until fairly recently, these issues have mainly been housed in the physical sciences, but since Linnaeus' time, but especially after Darwin and Wallace, the issues have applied to biology as well.
In this brief series we'll try to explore whether or how we can think of biology as the result of such universal laws or whether all we can do is make observations and rough causal generations about them. What is the place for strong causal theory in biology, or are empiricism and very general notions of process enough?

An example from the early prime era in modern science is the 'atom'.  Matter was conceived as being composed of these unseen particles, that accounted for the weight and properties of chemicals, and whose movement accounted for the weight, temperature, and pressure in gases.  Similar kinds of issues related to electromagnetism: what 'was' it?

An important late 19th-early 20th century example had to do with the existence of 'ether' as the medium through which electromagnetic radiation moved.  Ether could not be seen or felt but wavelike radiation had to be waves in something, didn't it?  Late-century tests failed to find it (e.g., the famous Michelson-Morely experiment).  In well-known interchanges at the time, figures like Ernst Mach, Albert Einstein and Max Planck thought about and debated whether there was a 'real' underlying general 'fabric' of Nature or whether specific empirical data simply showed us enough, and trying to delve deeper was dealing in metaphysics.  Many felt that was simply not justified--measurement or empiricism was what science could hope for.  On the other hand some, like Einstein, were convinced that Nature had a universal, and real underlying reality of which measurements were reflections.  He felt that theory, and in this case mathematics, could reveal or even 'intuit' Nature's underlying fabric.  An interesting article by Amanda Gefter in Nautilus science magazine deals with some of this history, with useful references.

So what about biology?
Biology had been largely a descriptive or even theological field before it became a modern science. But then came Darwin and his idea of evolution.  He viewed natural selection as a kind of Newtonian universal force.  Was it a type of explanation fitted simply around the empirical data that had been collected by Naturalists, or did it constitute some form of universal theory of life as Darwin asserted? Selection as a force had to work through some 'medium' or elements of inheritance.   His causal elements ('gemmules') were (like Lamarck's before him) entirely invented to 'fit' what was being observed about the evolution of diversity.  Indeed, he modeled natural selection itself after intentional agricultural selection because the latter could be demonstrated by human intent, while the former was generally far too slow to observe directly.  But there had to be some 'units' of inheritance for it to work, so he essentially invented them out of thin air.  Even in the early 20th century, 'genes' (as they became known) were largely hypothesized units for whose physical nature--or even reality--there was only indirect empirical evidence.

Assuming these discrete causal particles could enable the force, natural selection, to work on adaptive change was much like assuming that electromagnetic radiation needed ether to do its job.  Since differential reproductive success is observable, one can always define it to be the result of selection and to assume some gene(s) to be responsible. The test for relative success is, after all, only a statistical one with subjective decision-making criteria (like significance level) in empirical data.  In that sense, natural selection is a very  metaphysical notion because after the fact we can always empirically observe what has succeeded over time, or what functions have evolved, and call that the result of selection.  Such an explanation can hardly be falsified.  What is the reality of the underlying force, that Darwin likened to gravity?  Since it is always dependent on changing local conditions, what sort of a 'law' is it anyway?  And if it's basically metaphysical, should we reject it?

Mendelian genetics as metaphysics
If selection is a process, like gravity, it had to work on objects.  Because individual organisms are temporary (they all die), the objects in question had to be transmitted from parent to offspring.  That transmission was also found, by Mendel's experiment, to be a regular kind of process.  Mendel's causative 'elements', that we now call 'genes', appeared in his carefully chosen pea experiments to be transmitted as discrete things.  They fit the discretely causative world of the energized new field of atomic chemistry (see my Evolutionary Anthropology article on Mendel), with its idea that a chemical is made up of a particular kind of atom (thought by some to be multiples of hydrogen at the time), and Mendel's statistical tests showed a reasonably good fit to that discrete-unit worldview (indeed accusations that he or his assistants cheated may reflect his acceptance of discrete underlying but unseen and hence metaphysical, elements). But what were these genes?  In what serious sense did they exist as things rather than just an imaginary but essentially unconstrained variables conjured up to account for actual observations--of some sorts of inheritance, that of discretely varying traits--whose actual nature was entirely inaccessible?

These questions became very important in the debate about how evolution worked, since evolution required inheritance of favored states.  But what Mendelian analysis, the only 'genetic' analysis available at the time, showed was that the causal genes' effects did not change, and they only were shown to fit discretely varying traits, not the quantitative traits of Darwinian evolution.  For these reasons even many mainline evolutionary biologists felt that genes, whatever they were, couldn't account for evolution after all.  Maybe geneticists were indulging in metaphysics.

This was similar to the situation that engaged Einstein, Ernst Mach, and others about physics, but when it came to biology, the difference between empiricism and metaphysics became, literally, quite lethal!  The tragic impact of Profim Lysenko in the Soviet Union was due to a direct rejection by the scientific power structure that he established based on promises of rapid adaptation in plants, for example to the long, frozen Soviet winters, without adaptive 'genes' having to arise by evolution's slow pace.  As I summarized in another Ev. Anth article, it was in part the alleged 'metaphysical' nature of 'genes' in the early 20th century that Lysenko used to reject what most of us would call real science, and put in place an agricultural regime that failed, with mortally disastrous consequences. Along the way, Lysenko with Stalin's help purge many skilled Soviet geneticists, leading many of them to tragic ends. The mass starvation of the era of Lysenkoist agriculture in the USSR may in part have been the result of this view of theoretical science (of course, Lysenko had his own theory, which basically didn't work as it was as much wishful thinking as science).

But how wrong was it to think of genes as metaphysical concepts at the time?  Mendel had showed inheritance patterns that seemed to behave, statistically, as if they were caused by specific particles. But he knew many if not most traits did not follow the same pattern.  Darwin knew of Mendel's work (and he of Darwin's), but neither thought the other's theories were relevant to his own interests.

But in the first part of the 20th century, the great experimental geneticist TH Morgan used Mendelian ideas in careful breeding experiments to locate 'genes' relative to each other on chromosomes.  Even he was an empiricist and avowedly didn't really deal with what genes 'were', just how their causal agency was arranged.

Mendel's work also provided a research experimental approach that led via Morgan and others to the discovery of DNA and its protein coding sequences.  We call those sequences 'genes' and research has documented what they are and how they work in great detail.  In that sense, and despite early vague guesses about their nature, for most of a century one could assert that genes were in fact quite real, not metaphysical, entities at all.  Not only that, but genes were the causal basis of biological traits and their evolution!

But things have turned out not to be so simple or straightforward.  Our concept of 'the gene' is in rather great flux, in some ways each instance needing its own ad hoc treatment.  Is a regulatory element a 'gene', for example, or a modified epigenetic bit of DNA?  Is the 'gene' as still often taught in textbooks still in fact largely a metaphysical concept whose stereotypical properties are convenient but not nearly as informative as is the commonly presented view, even in the scientific literature?

Are we still resting on empiricism, invoking genetic and evolutionary theory as a cover but, often without realizing it, fishing for an adequate underlying theory of biological causation, that would correspond to the seamless reality Einstein (and Darwin, for that matter) felt characterized Nature? Is the gene, like Procrustes, being surgically adapted after the fact, to fit our desired tidy definition?  Is claiming a theory on which genetic-based predictions can be 'precise' a false if self-comforting claim, as a marketing tool by NIH, when in fact we don't have the kind of true underlying theory of life that Einstein dreamed of for physics and the cosmos?

We'll deal with that in our next posts.

Rare Disease Day and the promises of personalized medicine

O ur daughter Ellen wrote the post that I republish below 3 years ago, and we've reposted it in commemoration of Rare Disease Day, Febru...